
Majority-Inverter Graph for FPGA Synthesis
Luca Amarú1, Ana Petkovska2, Pierre-Emmanuel Gaillardon1,

David Novo Bruna2, Paolo Ienne2, Giovanni De Micheli1
Integrated Systems Laboratory (LSI), EPFL, Switzerland1

Processor Architecture Laboratory (LAP), EPFL, Switzerland2

Abstract— In this paper, we present an FPGA synthesis flow
based on Majority-Inverter Graph (MIG). An MIG is a directed
acyclic graph consisting of three-input majority nodes and
regular/complemented edges. MIG manipulation is supported
by a consistent algebraic framework leading to strong synthesis
properties. We propose MIG optimization techniques targeting
high-speed FPGA implementations. For this purpose, we reduce
the depth of logic circuits via MIG algebraic transformations
enabling denser LUT mapping on FPGAs. Experimental results
show that our MIG-based design flow reduces by 21%, on
average, the delay of the arithmetic circuits synthesized on a
state-of-art 28nm commercial FPGA device, as compared to a
commercial design flow.

I. INTRODUCTION

Majority-Inverter Graphs (MIGs) are a recently introduced
data structure for logic synthesis [1]. Thanks to the expressive
power of the majority operator, MIGs are provably superior
to any other AND/OR/INV graph in terms of representa-
tion compactness. From a logic synthesis perspective, the
competitive advantage of MIGs stands in the efficiency and
ease of their automated optimization. Indeed, it is possible to
explore the entire MIG representation space by using only five
primitive transformation rules [1]. MIG-based synthesis has
already shown promising results for semi-custom design [1].
However, no application to reconfigurable logic design has
been investigated yet.

Field-Programmable Gate Arrays (FPGAs) offer flexibility
and cost-effectiveness not achievable by semi-custom circuits.
However, their performance, power consumption, and area
utilization are worse compared to their semi-custom coun-
terparts [2]. This is especially true for arithmetic intensive
applications and circuits [3]. For this reason, FPGA synthesis
tools are subject to strong optimization requirements to keep
the logic implementation overhead as small as possible. In
this scenario, extending the capabilities of logic synthesis
techniques for FPGAs is of paramount importance.

In this paper, we propose a new synthesis methodology for
FPGA based on MIGs. Even though multiple design metrics
can be minimized using MIGs, we focus here on the circuit
delay to unlock very high-speed FPGA implementations. We
develop MIG optimization techniques that aggressively reduce
the logic depth and enable denser LUT mapping on FPGAs.
Experimental results show that our MIG-based design flow
reduces by 21%, on average, the delay of arithmetic circuits
synthesized on a state-of-art 28nm commercial FPGA, as
compared to a commercial design flow.

The remainder of this paper is organized as follows. Section
II provides a background on FPGA design and on MIGs.

Section III presents our MIG-based synthesis methodology
targeting FPGAs. Section IV shows experimental results over
arithmetic benchmarks on a state-of-art commercial FPGA.
Section V discusses the outcomes and limitations of this work
in light of the experimental results. Section VI concludes the
paper.

II. BACKGROUND AND MOTIVATION

This section presents relevant background on FPGA design
and on Majority-Inverter Graphs.

A. FPGA Design

Field Programmable Gate Arrays (FPGAs) are reconfig-
urable circuits consisting of a regular array of logic ele-
ments. Most logic elements exploit Look-Up Tables LUTs
to implement generic logic functions, a K-input one-output
LUT being able to implement any Boolean function of up
to K variables. Specific circuits are also intertwined in order
to implement specific hardware primitives such as adders,
multipliers, memory blocks, etc.

The FPGA design process consists of high-level synthesis,
logic synthesis and physical implementation. When designing
a logic circuit, the high-level synthesis converts a program-
ming language description (or alike) of a logic system into
dedicated hardware and general logic. The general logic por-
tions of the target circuit are processed by logic synthesis that
consists of logic optimization and technology mapping. The
logic optimization is technology independent and its objective
is to reduce the complexity of an abstract logic circuit by
minimizing metrics such as the size of the logic network, its
depth or its net count. Then, technology mapping maps the
logic circuit to the generic logic primitives available in the
target FPGA, i.e., the LUTs. Finally, the whole synthesized
circuit goes though physical implementation that consists
of packing, and placement and routing. As most FPGAs
nowadays use clustered-based logic blocks, efficient packing
techniques group logic blocks into clusters. After packing,
placement and routing assigns the clusters to physical FPGA
resources to implement the target circuit.

In this paper, we focus on the logic synthesis step of the
FPGA design flow.

B. Majority-Inverter Graph

A Majority-Inverter-Graph (MIG) is a data structure for
Boolean function representation and optimization. An MIG
is defined as a logic network that consists of 3-input majority
nodes and regular/complemented edges [1].



a) b)

AOIG MIG MIGAOIG

f=x⊕ y⊕ z

x

z z

yy

OR

AND AND

OR

AND AND

y

vu

x OR

AND

AND

g=x(y+uv)

y

1

v1u

1

x

g=x(y+uv)

MAJ

MAJ

MAJ

f=x⊕ y⊕ z

1x

z z

yy 1

1

1 1

1

MAJ

MAJMAJ

MAJ

MAJ MAJ

Fig. 1: Examples of MIG representations (right) for (a) f =
x⊕ y⊕ z and (b) g = x(y + uv) derived by transposing their
optimal AOIG representations (left). Complement attributes
are represented by bubbles on the edges.

MIGs can efficiently represent Boolean functions thanks
to the expressive power of the majority operator. Indeed, a
majority operator can be configured to behave as a traditional
conjunction (AND) or disjunction (OR) operator. In the case
of 3-input majority operator, fixing one input to 0 realizes
an AND while fixing one input to 1 realizes an OR. As a
consequence of the AND/OR inclusion by MAJ, traditional
AND/OR/INV graphs (AOIGs) are a special case of MIGs
and MIGs can be easily derived from AOIGs. Two examples
of MIG representations derived from their optimal AOIGs are
depicted by Fig. 1. AND/OR operators are replaced node-wise
by MAJ-3 operators with a constant input. Intuitively, MIGs
are at least as compact as AOIGs. However, even smaller
MIG representation arise when fully exploiting the majority
functionality, i.e., with non-constant inputs [1]. Later, we will
show two smaller and lower depth MIGs for the two examples
in Fig. 1.

We are interested in compact MIG representations because
they translate in smaller and faster physical implementations.
In order to manipulate MIGs and reach advantageous MIG
representations, a dedicated Boolean algebra was introduced
in the original paper [1]. The axiomatic system for the MIG
Boolean algebra, referred to as Ω, is defined by the five
following primitive transformation rules.

Ω



Commutativity – Ω.C
M(x, y, z) = M(y, x, z) = M(z, y, x)
Majority – Ω.M{

if(x = y): M(x, y, z) = x = y
if(x = y′): M(x, y, z) = z

Associativity – Ω.A
M(x, u,M(y, u, z)) = M(z, u,M(y, u, x))
Distributivity – Ω.D
M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
Inverter Propagation – Ω.I
M ′(x, y, z) = M(x′, y′, z′)

(1)
Some of these axioms are inspired from median algebra [4],

[5] and others from the properties of the median operator in
a distributive lattice [6]. A strong property of MIGs and their
algebraic framework is about reachability. It has been proved
that, by using a sequence of transformations drawn from Ω, it
is possible to traverse the entire MIG representation space [1].
In other words, given any two equivalent MIG representations,

yxx

x

zz vuyx 1 1

x

a) b)f=x⊕ y⊕ z f=x(y+uv)

y

MAJ

MAJ MAJ

MAJ

MAJ MAJ

Fig. 2: Optimized MIGs for (a) f = x ⊕ y ⊕ z and (b) g =
x(y + uv).

it is possible to transform one into the other by just using
axioms in Ω. This results is of paramount interest to logic
synthesis because it guarantees that the best MIG, for a given
target metric, can always be reached. Unfortunately, deriving
a sequence of Ω transformations is an intractable problem. As
for traditional logic optimization, heuristic techniques provide
here fast solutions with reasonable quality [7]. An efficient
depth optimization heuristic for MIGs consists of local Ω rules
iterated over the critical path [1]. Here, the rational driving the
local transformations is to push up variables with largest depth.

As previously anticipated, by using the MIG algebraic
framework it is possible to obtain better MIGs for the examples
in Fig. 1. Fig. 2 shows the new MIG structures, which are
optimized in both depth (number of levels) and size (number
of nodes). These MIGs can be reached using a sequence of Ω
axioms starting from their unoptimized structures. Details on
the optimization procedure for the example in Fig. 2(b) will
be given in Section III. We refer the reader to paper [1] for
an in-depth discussion on MIG optimization recipes.

III. MIG-BASED FPGA SYNTHESIS

In the FPGA synthesis scenario, MIGs and their algebraic
framework enable efficient logic optimization. As the perfor-
mance overhead with respect to ASICs is one of the major
hurdles of FPGA implementations, we develop high-speed
MIG-based synthesis algorithms to keep the FPGA/ASIC per-
formance gap just at its essential. Our contribution is mainly
at the logic optimization level but we describe here also the
integration of our technique in a complete FPGA design flow.

A. Note on Logic Depth vs. Delay Reduction
From a logic representation standpoint, reducing the delay

of a physical circuit naturally corresponds to reducing the
maximum number of logic levels (depth) in its abstract rep-
resentation. This model has been proven reasonably accurate
in early technology nodes, but, with the advent of nanometer-
scale technology nodes, the impact of interconnects is chang-
ing such trend. This is especially true when a reduction of the
depth implies an increase in area and thus more interconnect
requirements. In the context of FPGA architectures, the inter-
connect comes at a higher cost than in semi-custom integrated
circuits and therefore the trade-off between depth reduction
vs. area increase has to be carefully considered. Nevertheless,
when the depth reduction is much larger than its size overhead
the final physical delay results are still coherent with the
logic-level predictions. We refer to this scenario as aggressive-
depth optimization. In this paper, we target aggressive depth-
optimization of MIGs for high-speed FPGA implementations
in nanometer-scale technologies.



Fig. 3: f51m MCNC benchmark optimized by ABC (And-Inverter Graph) and by MIG depth optimization.

B. Powerful Depth-Reduction of MIGs

Our optimization goal is to reduce the depth, i.e., the
maximum number of levels, in an MIG. The depth of an MIG
is defined as the largest depth among all the majority nodes
present in such a graph.

1) Generalities: The depth of a majority node b =
M(a1, a2, a3) is defined as D(b) = maxi=1,2,3D(ai) + 1,
where a1, a2, and a3 are the inputs of b. As boundary
conditions, the depths of primary inputs and of 0/1 constants
are usually set to 0 even though different arrival times can be
specified.

An intuitive approach to reduce the depth of an MIG is to
apply local transformations on the nodes with largest depth.
Strategically, one can either focus only on the nodes on the
critical path or apply depth optimization on all the nodes.
On the one hand, when focusing on the critical path, we
get depth reduction with the minimum size overhead. On
the other hand, when considering all the nodes, we get even
better depth reduction (because more optimization opportuni-
ties arise) with larger size overhead. In the latter case, size
recovery techniques help reducing the overhead to (or close
to) the minimum value. When targeting aggressive depth-
optimization, a global depth reduction interlaced with tight
size recovery phases usually produces the best results. In all
cases, the key feature determining the MIG depth optimization
quality is the efficiency of local depth reduction of a majority
node.

In the following, we analyze the possible scenarios for
depth optimization of a majority node b = M(a1, a2, a3).
We restrict ourselves to the cases where the inputs a1, a2
and a3 are unbalanced in depth. This is because we know
that our local MIG algebraic transformations can always
reduce the depth in such cases. More complex MIG Boolean
techniques can reduce the depth also for the other cases,
but their study is out of the scope of this paper. For the
unbalanced depth case, we assume, without loss of generality,
that D(a1) < D(a2) < D(a3). In this case, the depth of node
b can be written as D(b) = D(a3) + 1. So, if we can reduce
the depth of a3 at least of one unit, we would reduce the depth
of b at least by one unit. To see how this depth reduction can
be made possible, let us expand the expression of a3 inside
b as b = M(a1, a2, a3) = M(a1, a2,M(a3;1, a3;2, a3;3)). If
a complemented edge appears in a3, it is propagated down
to a3;1, a3;2, a3v3 via axiom Ω.I . Again, we assume that
a3 inputs are unbalanced in depth, following the relation
D(a3;1) < D(a3;2) < D(a3;3). Note that, in some cases, the
inequalities do not need to be strict, we will give an example
about this case later on. We distinguish three cases to reduce
the depth of b = M(a1, a2,M(a3;1, a3;2, a3;3)).

a) Two inputs at the same level are identical (up to com-
plementation): This happens, for example, when a1 = a2 or
a1 = a′2. In this case, the majority axiom Ω.M applies and
eliminates the top node. For example, if a1 = a′2, then b can
be simplified as b = M(a3;1, a3;2, a3;3), which corresponds to



depth reduction of one level. Similar reasoning holds when
a pair of inputs are identical (up to complementation) in
M(a3;1, a3;2, a3;3).

b) Two inputs between the levels are identical (up to
complementation) We assume, without loss of generality,
that a1 = a3;1 or a1 = a′3;1. All the other cases can be
obtained by commutativity Ω.C. We first consider a1 =
a3;1. By using the associativity axiom Ω.A, it is possi-
ble to rewrite b = M(a1, a2,M(a3;1, a3;2, a3;3)) as b =
M(a1, a3;3,M(a3;1, a3;2, a2)). By pushing the critical ele-
ment a3;3 one level up we reduce the depth of b by one
unit. We now consider a1 = a′3;1. Using a combination
of axioms in Ω (see [1] for more details), it is possi-
ble to rewrite b = M(a1, a2,M(a3;1, a3;2, a3;3)) as b =
M(a2, a3;3,M(a1, a2, a3;2)). Also here, the critical element
a3;3 is pushed one level up and thus we reduce the depth of
b by one unit.

c) All inputs are independent This is the most gen-
eral case for the depth minimization of an MIG. In b =
M(a1, a2,M(a3;1, a3;2, a3;3)), with our unbalanced depth as-
sumptions, the critical depth element is a3;3. The distribu-
tivity axiom Ω.D is key in this case. Indeed, by applying
Ω.D (from left to right), it is possible to rewrite b as
b = M(a3;3,M(a1, a2, a3;1),M(a1, a2, a3;2)) where a3;3 is
pushed one level up and thus we reduce the depth of b by one
unit. While, in the other cases, the depth reduction required
no size overhead, here one extra node is locally required. Note
that such extra node might already exist in a global MIG.

C. Optimization Examples

In this section, we give two depth optimization examples
for an MIG. The first one is a small hand-made example, to
showcase the application of MIG depth reduction rules. On the
other hand, the second one shows graphically the MIG depth
optimization effect on a medium-sized benchmark.

1) Small-sized Example: We present a hand-made opti-
mization over a relatively small Boolean function, by focusing
on the MIG-depth optimization procedure used to obtain the
MIG in Fig. 2(b) from the MIG in Fig. 1(b). The original
function is f = x(y + uv) whose initial MIG representations
has been translated from its optimal AOIG (Fig. 1(b)). In this
example, all the nodes belong to the critical path assuming that
inputs/constants have 0 arrival time. The MIG can be also
expressed in formula as f = M(x, 0,M(y, 1,M(u, 0, v))).
One can immediately notice that between the top and mid-
dle levels two inputs are identical, up to complementation.
These are constant 0 and constant 1, respectively. Using the
previously introduced notations, one can assign the variables
in this formula as f = M(a1, a2,M(a3;1, a3;2, a3;3)) where
a1 = a′3;1 = 0, a2 = x, a3;2 = y, and a3;3 = M(u, 0, v).
Applying the depth reduction transformation described above
(see III-B1), we obtain f = M(a2, a3;3,M(a1, a2, a3;2)) =
M(x,M(u, 0, v),M(0, x, y)). Such result corresponds to the
optimized MIG in Fig. 2(b) that has one level of depth less
and the same number of nodes as compared to the original
MIG in Fig. 1(b).

2) Medium-sized Example: To show the practical effect of
the MIG depth reduction on a larger circuit, we consider the

MCNC benchmark ”f51m”, which has 8 inputs and 8 outputs.
After optimization with the ABC synthesis tool [8], [9], where
the commands collapse and resyn2rs are iterated until the
structure cannot be further improved, this benchmark counts
83 AND nodes and 10 levels. An initial MIG can be derived
from such AND-INV Graph preserving an identical size and
depth. Then, we employ the MIG depth reduction techniques
previously described. We combine them in an aggressive depth
optimization strategy interlaced with size recovery phases. As
a result, the depth-optimized MIG counts just 7 levels of depth
and 70 MAJ nodes. AIG and MIG are depicted by Fig. 3.

To give an early idea about the impact of these results in
FPGA synthesis, we perform LUT6-mapping on ”too large”
benchmark via ABC. By mapping the MIG-optimized version,
we get 3 levels of logic, while, by mapping the original ver-
sion, we get 4 levels of logic. Section IV presents experiments
on larger benchmarks, where even better advantages exist.

IV. SYSTEM-LEVEL PERFORMANCE EVALUATION

Up to this point, we explained how MIGs and their algebraic
framework can reduce the delay of FPGA designs from a
theoretical standpoint. In this section, we show how MIGs can
be used to complement commercial FPGA flows and improve
the mapping of logic circuits on state-of-the-art commercial
FPGAs. First, we introduce the considered tool flow and the
evaluation methodology. Then, we give design results over
several arithmetic benchmarks for both our novel methodology
and for traditional FPGA design flow.

A. The MIG-FPGA Design Flow

In the following, we consider a state-of-art commercial
FPGA design flow that comprises high-level synthesis, logic
optimization, technology mapping and physical implementa-
tion tools in a holistic environment. We refer to this flow as
traditional (commercial) FPGA design flow.

On the other hand, for the MIG-FPGA design flow, we
execute an MIG optimization as a pre-synthesis technique by
applying MIG depth reduction techniques on combinational
portions of the input circuit. The output of the MIG optimiza-
tion is then fed to the standard flow to complete the FPGA
design process. Note that the output of the flow consists of full
FPGA programming bitstreams, demonstrating the immediate
industrial potential of the approach.

Note that, for both flows, formal equivalence checking is
performed between the original design and the final FPGA
implementation represented as a post placement and routing
netlist, in order to guarantee the legality of the results. Fig. 4
depicts, side by side, the traditional FPGA design flow and
the MIG-FPGA design flow.

B. Methodology

We consider a commercial 28nm FPGA device with its as-
sociated design suite1. The primitive logic element here has the
equivalent expressive power of a 6-input LUT and can be used
in many different modes, e.g., memory, adders, multiplexers,
etc. The tool suite is used in its standard settings, with a delay

1Note that the vendor name, device part and tool suite cannot be disclosed
due to our license agreement.



TABLE I: MIG-based FPGA Design vs. Traditional FPGA Design
Traditional FPGA Design LUT# Logic Blocks# Glob. Int.# Loc. Int.# Delay (ns) Cell (ns) Int. (ns)

Benchmark I/O
add32 64/33 93 50 119 46 32.56 9.87 22.69
csa464 256/66 472 253 460 275 80.95 18.61 62.33
sqrt32 32/16 797 519 1175 371 90.45 30.58 59.87
diffeq1 355/289 5015 3195 7064 2440 97.86 22.43 75.42

compr64to6 64/6 247 161 263 132 49.53 13.56 35.96
hamming 200/7 637 431 722 265 58.21 10.90 47.31

div16 32/32 432 292 587 211 74.05 25.61 48.43
revx 20/25 2309 1391 2713 1147 69.20 21.44 47.75

mul32 64/64 1893 1053 2311 865 23.84 7.64 16.20
Total 1088/538 11895 7345 15414 5752 576.65 160.67 415.98

MIG-based FPGA Design LUT# Logic Blocks# Glob. Int.# Loc. Int.# Delay (ns) Cell (ns) Int. (ns)
Benchmark I/O

add32 64/33 311 184 361 185 13.87 6.42 7.45
csa464 256/66 759 432 937 419 27.28 6.48 20.80
sqrt32 32/16 291 194 396 142 73.67 26.40 47.27
diffeq1 355/289 4947 3140 6891 2401 88.99 22.32 66.67

compr64to6 64/6 328 208 348 177 42.55 15.31 27.20
hamming 200/7 570 387 723 233 45.57 12.57 33.00

div16 32/32 442 300 627 208 67.19 22.19 45.00
revx 20/25 2064 1287 2615 1034 70.92 20.54 50.38

mul32 64/64 1850 1048 2522 868 27.95 7.43 20.52
Total 1088/538 11562 7180 15420 5667 457.99 139.68 318.31

MIG/Trad. ratio 1/1 0.97 0.97 1.01 0.98 0.79 0.86 0.76

MIG optimization

mig_ntk.v

ntk.v

results_mig (not) equivalent

mig_ntk_netlist

Equivalence 
Check

results_cds (not) equivalent

ntk_netlist

Equivalence 
Check

Commercial
Design Suite

Commercial
Design Suite

Fig. 4: The traditional FPGA design flow and the MIG-FPGA
design flow.

oriented optimization. The benchmarks considered are combi-
national arithmetic circuits whose implementation on FPGA is
challenging. For example, we consider square-root modules,
bit-compressors, multi-operand adders, differential equation
solvers and others. Sequential benchmarks are currently not
handled by our software tool. Our reference flow is the native
traditional design flow of the considered commercial FPGA
tool suite.

As presented in Section IV-A, we use the MIG depth
reduction techniques on top of the commercial tool, as a
preoptimization step, which produces an alternative but equiv-
alent Verilog description to the flow. These techniques are
implemented within a Majority Logic Package (MLP) written
in C language. The depth minimization strategy is global to
enforce as much level reduction as possible, interlaced with
size recovery techniques. The output of the MLP tool is a
Verilog description of the optimized circuit in terms of atomic
majority operators.

All formal verification experiments, at both logic and FPGA
implementation levels, produced a positive (correct) result.

C. Experimental Results

Table I shows the FPGA design results, while Fig. 5 depicts
the same results graphically. All numbers refer to the final
design implementation, i.e., post place & route on the FPGA
fabric. In total, the MIG-based flow reduces the delay by
21%. Regarding the utilization of FPGA elements, the total
number of LUTs and interconnects is practically the same
with only few percentage points of difference, on average. The
delay breakdown accounted to logic blocks and interconnects
is depicted in Fig. 5-right. One can note that the depth
reduction does not reduce significantly the delay coming from
the logic blocks. Logic block delay depends on the technology
mapping results. In the MIG context, technology mapping does
not group many logic levels per LUTs, as compared to the
standard implementations. LUTs absorb nodes in width rather
than in depth from the logic network. However, it is worth
pointing out that the interconnect delay is reduced in most of
the considered benchmarks. MIG optimization increases the
number of logic nodes and, therefore, impacts the number
of LUTs and interconnections. Nevertheless, this increase of
likely to be local, i.e., having global and local interconnections
with a smaller length and reduced number of hops, that
reduces the overall constraint on the routing elements. This
validates the advantage of MIG depth reduction in FPGA
design for arithmetic benchmarks. The delay reduction is
positive for all benchmarks except two: revx and mul32. For
these two benchmarks, MIG optimization reduces the cell
delay but increase the interconnect delay. The benchmark with
the largest delay reduction is csa464. It implements an adder
with 4 operand of 64-bit width each. In its original description,
this benchmark has 139 levels of logic (in terms of cascaded
AND2 gates, INV apart). Thanks to MIG depth reduction,
the same benchmark has just 19 levels of logic (in terms of
cascaded MAJ3 gates, INV apart). The final delay reduction



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

add32 csa464
sqrt32 diffeq1

compr64to6
hamming

div16 revx mul32

Ar
ea

 (#
LU

Ts
)

Benchmark

Traditional Flow
MIG-based Flow

0

10

20

30

40

50

60

70

80

90

100

add32 csa464
sqrt32 diffeq1

compr64to6
hamming

div16 revx mul32

D
el

ay
 (n

s)

Benchmark

Traditional Flow - Cell Delay
Traditional Flow - IC Delay

MIG-based Flow - Cell Delay
MIG-based Flow - IC Delay

Fig. 5: Area and delay bar plots for MIG-based and traditional FPGA design.

is 3× as compared to the traditional FPGA design flow, but
the LUT count overhead is 60%.

V. DISCUSSION

The proposed approach demonstrates very promising perfor-
mance improvements for FPGA design of arithmetic circuits.
As compared to semi-custom circuits, FPGAs have reduced
flexibility for implementing arithmetic circuits. Indeed, the
high-level synthesis engine is usually employed to map arith-
metic functions on the numerous specific hardware supports.
Unfortunately, the designer looses the flexibility of the imple-
mentation. For instance, adders are typically implemented as
ripple-carry adders as they are supported by the commercial
FPGA devices. This would preclude the designer to efficiently
design a carry-lookahead adder circuit with potentially higher
performance. In addition, when the high-level synthesis fails to
identify arithmetic primitives, all the design efforts are trans-
ferred to the logic synthesis engine that is likely to loose many
optimization opportunities. The proposed technique provides
an approach to increase the performances of the logic synthesis
engine to handle such situations.

The MIG optimization is currently used as a front-end of
a commercially available FPGA design suite. The flow is
capable to generate programming bitstream for state-of-the-art
FPGA devices. While the approach is directly employable in
an industrial context (real circuits can be implemented using
the technique with significant improvement), we can expect
an even higher level of performances if MIGs were integrated
natively into the logic optimization and technology mapping
engines. Indeed, the current implementation is likely to miss
many optimization advantages due to the use of non-unified
data representation between the different tools.

Finally, we can expect more refined techniques exploiting
MIGs. At the tool level, MIGs give the possibility to di-
rectly exploit the FPGA arithmetic macros during the logic
optimization instead of only relying on high-level synthesis.
In particular, it is possible to envisage the automatic real-
ization of arithmetic circuits that tightly exploit both LUTs
and specific carry-path primitives. At the circuit level, MIGs
can be supported in a more disruptive way. Following the
approaches proposed in [10], [11], LUTs can be replaced

by dedicated hardware supports that natively implements the
majority operation networks.

VI. CONCLUSIONS

With this paper, we present an FPGA synthesis flow based
on Majority-Inverter Graph (MIG). An MIG is a directed
acyclic graph consisting of three-input majority nodes and
regular/complemented edges. MIG manipulation is supported
by a consistent algebraic framework leading to strong synthesis
properties. We proposed MIG optimization techniques target-
ing high-speed FPGA implementations. We reduce the depth
of logic circuits via MIG algebraic transformations enabling
denser LUT mapping on FPGAs. The experimental results
show that our MIG-based design flow reduces by 21%, on
average, the delay of arithmetic circuits synthesized on a
state-of-art 28nm commercial FPGA device, as compared to a
commercial design flow.

ACKNOWLEDGEMENTS

This research was supported by ERC-2009-AdG-246810.

REFERENCES

[1] L. Amarú, P.-E. Gaillardon, G. De Micheli, Majority-Inverter Graph: A
Novel Data-Structure and Algorithms for Efficient Logic Optimization,
Proceedings of the 50th Design Automation Conference, 2014, pp. 1-6.

[2] I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs.
Proceedings of the 14th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, Calif., Feb. 2006, pp. 21-30.

[3] H. Parandeh-Afshar et al., Improving FPGA performance for carry-save
arithmetic, IEEE Trans. on VLSI Syst., vol. 18, no. 4, pp. 578-90, 2010.

[4] J. R. Isbell, Median algebra, Trans. Amer. Math. Soc., 319-362, 1980.
[5] D. Knuth, The Art of Computer Programming, Volume 4A, Part 1, New

Jersey: Addison-Wesley, 2011.
[6] G. Birkhoff, A ternary operation in distributive lattices, Bull. of the Amer.

Math. Soc., 53 (1): 749752, 1947.
[7] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill, New York, 1994.
[8] R. Brayton, A. Mishchenko, ABC: An Academic Industrial-Strength

Verification Tool, in Proceedings of the International Conference on
Computer Aided Verification, ser. Lecture Notes in Computer Science,
vol. 6174. Springer, Jul. 2010, pp. 2440.

[9] ABC: A System for Sequential Synthesis and Verifica- tion, Berkeley
Logic Synthesis and Verification Group, Berkeley, Calif., Sep. 2014.

[10] P.-E. Gaillardon, L. Amarú, G. De Micheli A New Basic Logic Structure
for Data-Path Computation, in Proceedings of the 22nd ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2014.

[11] G. Zgheib, et al., Revisiting And-Inverter Cones, in Proceedings of
the 22nd ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2014, pp. 45-54.


