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Abstract 
The paper describes a SAT-based framework for logic 

optimization with don’t-cares aimed at reducing delay and 

area after LUT mapping. While individual components of 

the framework are known, its novelty is in synergistically 

combining the following aspects of SAT-based optimization 

for the first time: a) improved computation of delay and 

area criticality, b) novel reconvergence-driven windowing 

and divisor selection, c) the use of complete don’t-cares, 

and d) SAT-based generation of new useful cut-points in 

the network. Experimental results show that a preliminary 

implementation improves delay after LUT mapping at the 

cost of some area increase, compared to previous methods. 

1. Introduction 
Logic synthesis and technology mapping are often 

charged with the task of reducing delay in a logic network 

representing a hardware design. Delay optimization is 

important in FPGA synthesis because reduced delay 

correlates well with improved maximum clock frequency 

that can be achieved for the design. When delay 

optimization succeeds in reducing delay, area often 

increases, making area optimization under delay constraints 

another important goal of logic synthesis for FPGAs.  

In this paper, we treat delay and area optimization 

uniformly. However, some methods differ depending on 

whether the goal of optimization is delay or area. It is noted 

when a notion or a heuristic is delay- or area-specific. 

Most optimization methods for logic networks developed 

in the last few decades fall into one of the two categories:  

• Those applied on a technology-independent level 

before mapping without taking into account a specific 

LUT size used during mapping. 

• Those applied after technology mapping when the 

structure of the LUT network is fixed and can be 

modified only incrementally. 

This paper generally follows the second approach, but it 

also compatible with the first approach, because it allows 

candidate divisors to be selected among those subject graph 

nodes that are not exposed as outputs of individual LUTs. 

The paper also proposes a novel notion of delay/area 

criticality, which allows for better selection of target nodes 

during optimization, and a novel reconvergence-driven 

windowing and divisor selection, which improve runtime. 

In addition to the above, the proposed method employs 

several known techniques in a way, which enhances the 

generality and expressive power of the optimization.  

Figure 1 compares the proposed method (command 

&mfsd in ABC) against three other techniques, a) AIG-

rewriting [10] (dc2), b) structural LUT mapping [11] (if), 

and c) don’t-care-based optimization [12] (mfs2). The 

following criteria are used for comparison: 

• Use of AIGs as an underlying representation – this is 
preferred because it provides more candidate divisors 

for re-expressing the target node. 

• Accounting for the target LUT size – this is important 

for making goal-oriented changes; otherwise structural 

bias hinders the mapper in finding a good mapping. 

• Use of dynamic programming – this is desirable 
because it helps minimize delay at the target node by 

getting the best possible delay at its fanins. 

• Use of SAT-based methods – these tend to explore a 
larger search space whereas other methods are often 

limited to fewer structural optimization opportunities. 

• Use of don’t-cares – these allow for more aggressive 

transformations since the equivalence is only 

maintained on the care-set. It also reduces the runtime 

of QBF based functional evaluation. 

• Creating cut-points that are not in the current netlist – 
these additional nodes synthesized by the algorithm 

can result in more optimization opportunities.  
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Figure 1. Comparing optimization methods. 

Note that structural mapping creates new cut-points only 

when the target technology is LUT-structures [15] rather 

than single LUTs. 

Some traditional LUT mapping is delay-optimal for a 

fixed subject graph [2][11]. However, the proposed 

algorithm can change the graph structure, thereby enabling 

mapping with even shorter delays.  



The proposed method can be extended to standard cells, 

technology-independent AIGs, and logic structures 

composed of known primitives, such as MUXes or majority 

gates. The main difference, compared to the LUT networks, 

in the synthesis phase, when the result of synthesis is not a 

LUT structure, but a complex programmable cell [13] or a 

combination of gates from a standard-cell library [14].  

The rest of the paper is organized as follows. Section 2 

contains necessary background. Section 3 gives a top-level 

view of the optimization framework. Section 4 describes 

the components of the framework. Section 5 shows 

experimental results. Section 6 concludes the paper. 

2. Background 

2.1 Boolean function 

In this paper, function refers to a completely specified 

Boolean function f(X): B
n
 → B, B = {0,1}. The support of 

function f is the set of variables X, which can influence the 

output value of f. The support size is denoted by |X|.  

Expressions x  and x are the negative and positive literals 

of variable x, respectively. “Negative” and “positive” are 

the polarities of variable x in the literals.  

2.2 Boolean network 

A Boolean network (or circuit) is a directed acyclic graph 

(DAG) with nodes corresponding to Boolean functions and 

edges corresponding to wires connecting the nodes.  

A node n has zero or more fanins, i.e., nodes driving n, 

and zero or more fanouts, i.e., nodes driven by n. The 

primary inputs (PIs) are nodes without fanins. The primary 

outputs (POs) are a subset of nodes delivering the results to 

the environment. A transitive fanin (fanout) cone 

(TFI/TFO) of node n is a subset of the network nodes, 

reachable through the fanin (fanout) edges of the node.  

Internal flexibilities of a node in a network arise because 

of a limited controllability and observability. Lack of 

controllability occurs because some combinations of values 

are never produced at the fanins of the node. Lack of 

observability occurs because the node’s value does not 

have an impact on the values of the POs under some values 

of the PIs. Examples can be found in [9].  

These internal flexibilities result in don’t-cares at the 

node n. The complement of the don’t-cares is the care set. 

Given a network with PIs x and PO functions {zi(x)}, the 

care set Cn(x) of a node n is a Boolean function  

( ) [ ( ) ( )]
n i i

i

C x z x z x′= ⊕∑  

where ( )iz x′ are the PO functions in a copy of the network 

with node n complemented, as shown in Figure 3 [9]. 

2.3 And-Inverter Graph 

An And-Invertor Graph (AIG) is a combinational 

Boolean network composed of two-input AND gates and 

inverters. An AIG can be derived by factoring the functions 

of the logic nodes found in the network. The AND/OR 

gates in the factored forms can be converted into node 

AIGs using DeMorgan’s rules. The AIG of the network is 

then constructed in a topological order by composing each 

node AIG into a network AIG.   

A cut C of a node n is a set of nodes of the network, 

called leaves of the cut, such that each path from a PI to n 

passes through at least one leaf. Node n is called the root of 

cut C. The cut size is the number of its leaves. A trivial cut 

of a node is the cut composed of the node itself. A cut is K-

feasible if cut size does not exceed K.  

2.4 Boolean satisfiability 

A satisfiability problem (SAT) takes a propositional 

formula representing a Boolean function and decides if the 

formula is satisfiable or not. The formula is satisfiable 

(SAT) if there is an assignment of variables that evaluates 

the formula to 1. Otherwise, the formula is unsatisfiable 

(UNSAT). A software program that solves SAT problems 

is called a SAT solver. SAT solvers provide a satisfying 

assignment when the problem is satisfiable. 

Modern SAT solvers can accept assumptions, which are 

single-literal clauses holding for one call to the SAT solver. 

The process of determining the satisfiability of a problem 

under given assumptions is called incremental SAT solving. 

2.5 Conjunctive Normal Form (CNF) 

To represent a propositional formula in the SAT solver, 

important aspects of the problem are encoded using 

Boolean variables. The presence or absence of a given 

aspect is represented by a positive or negative literal of a 

variable. A disjunction of literals is called a clause.  A 

conjunction of clauses is called a CNF. CNFs can be 

processed efficiently by mainstream CNF-based SAT 

solvers, such as MiniSAT [3]. 

Deriving a CNF for a subset of nodes of the Boolean 

network is performed by putting together CNFs obtained by 

converting each node. A CNF for a node is derived by 

deriving SOPs of the on-set and off-set of the Boolean 

function of the node, and converting these SOPs into CNF 

using the De Morgan rule. 

3. Framework overview 
The proposed optimization framework includes several 

components whose interaction is illustrated in Figure 2. 

 

 

Figure 2: Overview of optimization framework. 

In the case of delay optimization, processing begins by 

selecting delay-critical nodes. If an initial mapping is 
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and compute a sequence of critical nodes. If no mapping is 

provided, a delay-oriented mapping is computed on the fly 

assuming that the critical paths contain the entire network.  
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For this, a priority queue is maintained during computation, 

which ranks nodes based on the number of critical paths 

passing through them, as discussed in Section 4.1.  

For each node that is targeted for delay or area 

optimization, the following steps are performed:  

• A topological window and candidate divisors are 
computed by a novel reconvergence-driven windowing 

and divisor selection method introduced in Section 4.2. 

• A subset of candidate divisors is selected and proved to 
be feasible as a functional support of the target node, 

or proved that no feasible subset exists, using a novel 

divisor selection procedure, described in Section 4.3. 

Finally, a new LUT structure, which by construction is 

guaranteed to reduce area or delay at a target node, is 

synthesized using QBF, as shown in Section 4.4. The main 

difference, compared to previous work [6][4][13] on QBF-

based LUT-structure evaluation, is that don’t-care are used, 

which improves the quality and at the same time reduces 

the runtime of the QBF solver. 

For example, consider the following scenario that may 

appear during delay optimization. If the best delay of a 

target node in the preliminary mapping is 5, the framework 

attempts to change the circuit structure of the target node 

and its fanins, so that delay 4 is achieved. It is assumed 

here that each LUT has a delay of 1. Thus, divisors with 

delay 3 or less are selected. If it is possible to realize the 

target node using a LUT whose fanins have delay 3, then 

the node can be realized with delay 4, and the goal of delay 

optimization is achieved. If the node cannot be realized as a 

single LUT whose fanins have delay 3, the framework may 

check the existence of a LUT-structure composed of two 

LUTs, such that inputs to the fanout LUT of the structure 

have delay 3 or less, while inputs of the fanin LUT have 

delay 2 or less. If that structure exists, the target node can 

be realized with delay 4. If not, the computation may try a 

larger LUT-structure, or move to another node. 

At the end of the computation, or if a timeout occurs, the 

final restructured LUT network is generated and returned. 

The network is guaranteed to have the delay projected by 

the framework during delay optimization.  

4. Framework components 

4.1 Detection of critical nodes 

While most of the paper considers delay and area 

optimization uniformly, this section treats them differently.  

SAT-based delay optimization is based on the notion of 

the delay criticality of a node. Delay criticality of a node 

shows how much reducing delay at the node may reduce 

the maximum delay of the network, measured as the largest 

number of LUTs on any path from a PI to a PO.   

SAT-based area optimization is based on the notion of the 

area criticality of a node, which shows how much area 

could be potentially saved by changing the node. The area 

is measured as the number of LUTs. 

Area criticality 
We consider area criticality first. The maximum fanout 

free cone (MFFC) of a node in the network, is the set of all 

internal nodes that would be removed if the node were to 

be removed. The larger is the MFFC of a node, the more 

area-critical is the node. For example, consider a node 

whose all fanins have some other fanouts besides the given 

node. The MFFC of this node contains only the node itself. 

Even if the node is proved redundant or replaced by another 

node already present in the network, only one LUT is 

saved. If, on the other hand, the node has a large MFFC, it 

may be possible to reduce the MFFC size or reexpress the 

function of the node in such a way that it does not depend 

on some LUTs in its MFFC, but instead depends on the 

LUTs that are currently outside of the node’s MFFC. 

When resynthesis for area is performed, the nodes are 

considered in the decreasing order of their MFFC sizes. If 

an area-critical node cannot be improved, the node’s fanins 

are considered in the decreasing order of their MFFC sizes. 

An attempt is made to replace the most area-critical 

fanin(s) by the nodes that are currently outside of the 

MFFC of the fanin(s). If this is possible, the transformation 

is accepted, thereby reducing the total area.  

Delay criticality 

To characterize delay criticality of a node, it is helpful to 

introduce the notion of a critical edge. An edge between a 

node and its fanin is critical, if increasing the delay of this 

edge results in increasing the delay at a PO. By extension, 

an internal node is critical, if it has at least one incoming or 

outgoing critical edge. The critical region of the network is 

the set of all critical nodes. 

It is helpful to observe that two nodes may be critical and 

yet an edge between them, if it is exists, may be not critical, 

because the nodes are critical due to some other edges. 

An input-to-output critical path (IOCP) is a sequence of 

critical edges originating at a PI and terminating at a PO. 

Similarly, an output-to-input critical path (OICP) is a 

sequence of critical edges originating at a PO and 

terminating at a PI. Two critical paths (CPs) are different if 

they differ in at least one edge.  

Next, we introduce a method of computing how many 

different IOCPs (OICPs) pass through a given critical edge. 

To compute the number of IOCPs, we assign IOCP count 

of a PI to be 1, if the PI appears on a critical path, and 0, 

otherwise. Next, we traverse the network in a topological 

order from PIs to POs and set the IOCP count of an internal 

node to be equal to the sum of IOCP counts of the fanins. 

The OICP counts of the nodes are computed similarly, by 

exchanging the roles of PIs and POs. The delay criticality 

of a node is defined as the total number of IOCPs and 

OICPs passing through the node.  

This sum is computed at the beginning and updated 

incrementally during delay optimization. Each time the 

delay of a node is reduced, the delay change is propagated 

to the TFI and TFO. The edges that were critical before, 

may be no longer critical, and as a result, the number of 

IOCPs and OICPs will be reduced. Both the edge delays 

and the CP counts are updated incrementally, by traversing 

the affected part of the node’s TFI and TFO. Only if the 

global delay of the network has changed after updating the 

node, new critical edges are created, in which case the edge 

delays and the CP counts are recomputed from scratch.  

In our implementation, the critical nodes are stored in the 

priority queue ordered by their delay criticality. The most 

critical node is repeatedly extracted from the queue and an 

attempt is made to improve delay of the node. If the attempt 

succeeds, the network is changed and the delay criticalities 



of the nodes are incrementally updated, which is reflected 

in the ordering of the nodes in the queue.  

It should be noted that the notion of delay criticality, as 

defined above, elegantly captures the node’s role in the 

critical region of the network. If the sum of CP counts is 0, 

the node is outside of the critical region. The larger is the 

sum of CP counts, the more critical paths go through the 

node and the more likely improving delay at the node may 

reduce the maximum delay of the network. 

To avoid making unnecessary changes, the network is 

backed up each time after its maximum delay has changed. 

If the maximum delay of the network is not reduced after a 

number of incremental delay optimization steps when a 

resource limit is reached, the network is restored to the 

state it was the time of the last backup. 

4.2 Windowing and divisor selection 

This section describes an improved windowing algorithm, 

which leads to better runtime and quality of results, 

compared to the traditional windowing.  

Window computation 

The traditional structural window for a node contains a 

fixed number of TFI/TFO levels of logic centered at the 

node, plus all paths originating in the limited TFI and 

terminating in the limited TFO [9]. Thus, by construction, 

this window contains all recovergences, such that at least 

one of the reconvergent paths goes through the node. 

The main idea of the new windowing, is that the non-

reconvergent paths do not provide don’t-cares, even if they 

are included in the window.  One possibility is to compute 

a new window by starting from the traditional window and 

removing all the nodes found on the paths without 

reconvergence in the current window. Another possibility, 

is to collect the recovergent paths directly, by performing a 

dedicated traversal starting from the node, as shown below.   

For this traversal, we consider the netlist as an undirected 

graph, that is, we traverse fanins and fanouts of each node 

uniformly, without distinguishing them. Each node 

accessed during the traversal is marked as “visited once”. If 

the same node is accessed again, it is marked as “visited 

more than once”. All the nodes that are “visited more than 

once” along with the path connecting them with the target 

node, are collected and included in the window. 

Candidate divisor selection 

Once the window is computed, we need to determine the 

set of candidate divisors, that is, the set of nodes that may 

be used to reexpress the function of the target node while 

trying to optimize ir for delay or area. When the traditional 

windowing [9] is used, the set of candidate divisors is 

composed of two sets of nodes: (a) the window nodes in the 

TFI of the target node, and (b) the window nodes that are 

not in the TFI and the TFO of the target node, but whose 

support in terms of the window inputs, is a subset of the 

support of the target node.  

In the previous subsection, we introduced an improved 

reconvergence-driven windowing algorithm. Here we 

similarly improve candidate divisor selection, by making it 

reconvergence-driven. To this end, we group the divisors 

using their topological information. Two divisors are 

topologically related if they share a path to the target node 

or if they are located on overlapping reconvergent paths. In 

both cases, the divisors share some support variables and 

may be may replace each other as fanins of the node.  

For example, suppose we are building a new functional 

support of the target node, and at some point we found a 

feasible set of divisors, as defined in the next section. 

Furthermore, suppose one divisor does not meet the 

optimization requirements, in particular, its arrival time is 

too high, thereby precluding a delay improvement at the 

target node. In this case, we can remove this late-arriving 

divisor from the feasible set, temporarily resulting in an 

infeasible set. To derive another feasible set, there is no 

need to try divisors that are not topologically related to the 

removed one. Instead, we consider adding only divisors 

that are topologically related, but have smaller delay than 

the removed one. If adding one or more of them makes the 

set feasible, we achieved the optimization goal. Otherwise, 

we conclude that the target node’s delay cannot be 

improved and the algorithm moves on the next target node. 

Characterizing don’t-cares 

The window computed for node n is used to derive a 

Boolean relation defining the local care set of n, as shown 

in Figure 3. The circuit representation of the Boolean 

relation contains two copies of n’s TFO, one of which has 

an inverter at n’s output. A comparator network is added to 

compare the pairs of corresponding outputs of the window. 

The output of the comparator is set to 1; hence any 

satisfying assignment complementing n’s function causes a 

difference to be seen by at least one of the window outputs. 

Thus, the constructed circuit represents care set of the node 

in the given window. 

 

Figure 3. Deriving Boolean relation containing all possible 

implementations of the node in terms of candidate divisors. 

 

The Boolean relation represented by the circuit structure 

in Figure 3 relates the function of n with functions of 

candidate divisors whose support is a subset of the support 

of the node’s TFI, illustrated as divisors d1 and d2, shown in 

Figure 3. Note that candidate divisors may be contained in 

n’s TFI, such as d1, or just having its support contained in 

its TFI, such as d2. 

4.3 Checking feasibility of a set of divisors 

A set of candidate divisors is feasible for implementing a 

target node, if the node’s function can be expressed in 

terms of these candidates only.  Obviously, the set of the 
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node’s fanins is feasible but some fanins may be late-

arriving and not useful for reducing delay of the node. 

The following SPFD Theorem [12] is used check the 

feasibility of a set of divisors: The set of divisors is 

infeasible iff there exist two care set minterms (m1, m2) such 

that the node has different values in the two minterms while 

each divisor has the same value in the two minterms. 

In this case, the set of divisors does not have enough 

expressive power to distinguish the two minterms, but the 

target node should be able to distinguish them. 

There are two ways of checking whether a set of divisors 

is feasible. The first one, based on a resubstitution miter, 

was introduced in Section 4.4 of [12]. It is faster for large 

sets of divisors, but the drawback is that it requires the use 

of interpolation to derive the new function at the node.  

The second way to check the divisor set feasibility is 

based on cube enumeration. In this case, we construct a 

SAT instance representing the node’s care set, as shown in 

Figure 3. Note that the window output is set to 1. This SAT 

instance is used to perform three tasks: 

• compute a care onset minterm m1 of n, 

• compute a special care offset minterm m2 of n, 

• expand m1 against the offset if m2 does not exist.  

To perform the first task, n’s output is assumed to be 1, 

and the SAT solver is used to find a satisfying assignment.  

To perform the second task, n’s output is assumed 0 

while each candidate divisor is assumed to have the same 

value it had for m1. If this problem is SAT, we have found a 

care offset minterm, m2, while having the same values at 

the divisors as for m1. According to the above theorem, this 

set of divisors is infeasible. 

If the problem is UNSAT, the SAT solver’s method, 

called analyze_final() in MiniSAT, is used to return a 

subset of candidate divisor literals, which should be present 

in a cube for it to have no overlap with the offset, that is, to 

belong to the onset plus the don’t care set. Thus m1 has 

been expanded to a cube having no overlap with the care 

offset. The resulting cube is used later as a blocking clause 

to make sure that future care on-set minterms are not 

covered by this cube. The process is repeated until all care 

onset minterms are covered by at least one cube, or until 

the infeasibility of the set of divisors has been proved. 

The advantage of checking the divisor set feasibility 

using cube enumeration is that it derives the new function 

at the node as a by-product. However, since large functions 

often have more cubes, this method can be slower for 

functions with more than 10 inputs. 

4.4 Selecting a set of divisors 

In the case of delay optimization, the above procedure 

checks the existence of a feasible subset of divisors that can 

reduce the delay of n from D to D-1. This procedure is 

called for a set of all divisors of the node having delay D-2 

or less. If the set is not feasible, we know that the node 

cannot be implemented with delay D-1, given the circuit 

structure used to generate the candidate divisors.  

If the given set of divisors is feasible, the procedure 

returns a reduced subset selected by calls to 

analyze_final(). If the subset contains no more than K 

divisors, the target node can be implemented using one K-

LUT. If the resulting subset contains more than K divisors, 

we try to find a LUT-structure implementing the node in 

terms of more than one K-LUT, such that the delay of the 

target node does not exceed D-1.  

For this, we consider the topology of a selected LUT-

structure and the delays of the set of divisors. For example, 

if the LUT-structure contains two LUTs in tandem, then for 

the LUT-structure to be delay-reducing, the fanins of the 

top LUT should have delay D-2 or less, while the fanins of 

the bottom LUT should have delay D-3 or less. 

4.5 Synthesizing a LUT-structure  

SAT-based synthesis of LUT-structures for the given 

Boolean function was pioneered in [6]. Our implementation 

uses a dedicated Quantified Boolean Formula (QBF) solver 

in ABC [1], which is based on iterative SAT solving. 

Computing a LUT-structure S(x, p) that can implement a 

Boolean function F(x), is done by checking satisfiability of 

the QBF formula: ∃p∀x [S(x, p) = F(x)]. If a satisfying 

assignment for the parameters p exists, it shows how to 

configure the LUT structure to realize F(x). 

Unlike the case when F(x) is completely specified and is 

given explicitly as a truth table or as a circuit, the 

formulation in this paper uses don’t-cares. To extend the 

above approach for incompletely specified functions, 

Boolean function F(x) and the care-set C(x) are represented 

implicitly as a SAT instance similar to the one constructed 

in Section 4.3 to relate the value of the node with those of 

the candidate divisors. The difference in the new SAT 

instance is that, instead of comparing a window containing 

the original node and the same window containing the 

complemented node, as shown in Figure 3, we are 

comparing the node’s original implementation with the 

node’s implementation as a LUT-structure, S(x, p).  

For a specific minterm, say  p = p0, the above SAT 

instance checks whether the LUT-structure S(x, p0) 

initialized with values p0 implements the target node on the 

care-set. If it does, the SAT instance is UNSAT, and the 

desired LUT structure is represented by minterm p0. If it is 

SAT, we get a care-set minterm x0, for which parameter 

values p0 fail to implement the given function.  

The minterm x0 is substituted into S(x, p), and the 

resulting function, W0(p) = S(x=x0, p), is used as an 

additional constraint for ∃p[S(x, p) == F(x)]. If the resulting 

formula is SAT, we have another set of specific values of p,  

p1,  which is handled in the same way as p0, generating 

another constraint W1(p). 

If at some point the formula is UNSAT, the QBF instance 

has no solution, meaning that the desired LUT structure 

does not exist. An upper bound on the number of iterations 

is 2
|x|
, but in practice convergence is often achieved much 

faster. An additional speedup can be achieved by adding 

symmetry-breaking clauses [4] and solving multiple QBF 

instances concurrently [13]. 

5. Experimental results 
A preliminary version of the proposed SAT-based 

optimization framework specialized for delay optimization 

has been implemented as command &mfsd in ABC [1]. 

This command differs from two SAT-based commands: 

mfs2 [12] for LUT-mapped networks and mfs3 [13] for 

standard-cell-mapped networks. 



The implemented version is limited in the following way: 

• Only delay optimization is considered 

• All nodes are targeted for delay optimization rather 

than some nodes on the critical paths. 

• The proposed reconvergence-driven techniques are 

not enabled and, instead, the traditional windowing 

and candidate divisor selection are used [12]. 

The method implemented in &mfsd was compared 

against delay optimization by mapping into LUT structures 

composed of two 4-input LUTs (called “S44”) [15]. These 

two methods are similar in that they use 1) dynamic 

programming, 2) AIGs as the underlying data-structure, 

and 3) generation of new delay-oriented cut-points, which 

are outputs of the bottom LUT feeding into the top LUT.  

The methods differ in that S44 considers multiple cuts at 

each node and uses Boolean decomposition implemented 

with the truth tables to target the 2-LUT structures. The 

proposed method uses SAT-based LUT-structure synthesis 

on the care-set while limiting the support to a set of feasible 

divisors. The number of sets considered is fewer than the 

number of cuts in S44 but the expressive power of SAT-

based synthesis with don’t-cares is higher. 

Both S44 and the proposed method have been applied to a 

suite of 60 industrial designs ranging in size from 1K to 

50K 4-LUTs.  Three runs were performed: (1) only S44, (2) 

only &mfsd, (3) S44 followed by &mfsd.  

The results are:   

1) &mfsd improved delays, expressed in terms of 4-

LUT levels, by 4.0% compared to S44 alone,  

2) when both S44 and &mfsd are used, the delays 

improved by 5.3%, compared to S44 alone. 

The runtimes of the proposed method are reasonable. For 

the largest examples, it takes about 3-5x longer than S44 

and did not exceed 5 min for any of the designs.  

In these preliminary runs, the area increased by more than 

10%.  It is expected that the area increase will be less when 

area recovery under delay constraints is performed. 

6. Conclusions 
The paper proposes a new powerful method for 

optimization of networks mapped for LUT-based FPGAs. 

The method is more general than the known methods and 

improves most of the aspects of SAT-based delay and area 

optimization with don’t-cares:  

• windowing and candidate divisor computation are 

reconvergence-driven, which reduces the size of 

logic considered and the runtime, while improving 

the expressive power and the quality of results; 

• divisor selection is modified to find a minimal set of 

divisors using a new efficient SAT-based procedure, 

which efficiently tries different divisor combinations 

to find the one with a minimum cost;  

• a new flavor of QBF based evaluation procedure 

allows for updating several LUTs at a time and 

works for multi-output windows, while the previous 

SAT-based optimization with don’t-cares [12] can 

change only one LUT at a time, while that changing 

more than one LUT [4] does not use don’t-cares. 

Future work in this area will include: 

• fine-turning SAT and QBF engines to reduce runtime 

• extending these methods to work for standard cells 

• developing SAT-based methods for topologically 

constrained LUT architectures, such as 2D and 3D 

meshes, in which each LUT can communicate with a 

limited number of neighbors.  
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