
Constrained Interpolation for Guided Logic Synthesis
Ana Petkovska∗, David Novo∗, Alan Mishchenko† and Paolo Ienne∗

∗Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences
CH–1015 Lausanne, Switzerland

{ana.petkovska, david.novobruna, paolo.ienne}@epfl.ch
†University of California, Berkeley, Department of EECS

alanmi@eecs.berkeley.edu

Abstract—Craig interpolation is a known method for expressing a
target function f as a function of a given set of base functions G. The
resulting interpolant represents the dependency function h, such that
f = h(G). Generally, the set G contains enough base functions to enable
the existence of multiple dependency functions whose quality mainly
depends on which base functions were selected for reconstruction. The
interpolation is not an optimisation problem and thus, often, it selects
some random base functions and, particularly, omits others potentially
required for an optimal implementation of the target function. Mainly, it
is impossible to impose that the interpolant uses a specific base function.

In this paper, we propose a method that forces a specific base function
gi as a primary input of a dependency function. Such a dependency
function is built as a Shannon expansion of two constrained Craig
interpolants for the assignments of the primary inputs for which gi
evaluates to 0 and 1, respectively. We also introduce a method that
iteratively imposes a predefined set of base functions. In each iteration,
we generate a new dependency function for use as the target function of
the next iteration in order to force the use of a base function.

We show that, unlike the standard Craig interpolation method, our
carving method succeeds to impose the desired base functions with
very high probability. It recomposes single-output logic circuits as
their delay- or area-optimised implementations regardless of the input
implementation. The proposed methods can be efficiently employed for
rewriting circuits in some synthesis-based algorithms.

I. INTRODUCTION

Recent progress in SAT solvers has spurred increasing interest in
novel applications of SAT across a number of domains. One such
application is the generation of Craig interpolants for use in a variety
of logic synthesis algorithms [1–4]. In this paper we propose a
carving interpolation method that overcomes some limitations of the
standard Craig interpolation method used for reimplementing a target
function with a given set of base functions.

Namely, some synthesis-based Engineering Change Order (ECO)
algorithms [4], [5] use Craig interpolation to derive logic circuits,
called patches, that correct a flawed portion of a circuit. To maximise
the reuse of logic from the flawed implementation, the patch is built
as an interpolant that uses a set of implemented components as the
base functions. The proposed carving method gives better control on
the functions to be included in the logic cone representing a patch.
This is especially useful because the standard interpolation method
relies on the structure of the proof, which in turn is strongly biased by
the heuristics used by the SAT solver. These heuristics are agnostic
to the purposes of the ECO engine and therefore generally do not
give the best resulting circuit structure. However, our carving method
can overcome the deficiencies of these heuristics and result in more
compact patches.

On the other hand, new attempts to synthesise logic circuits by
performing global restructuring may also profit from our carving
technique. Some logic optimisation heuristics [6], [7] reconstruct
the input circuit structure by making use of small single-output

circuits, called bricks, that are found to be useful by a particular
utility function. These algorithms construct the output circuit structure
gradually using sets of bricks. The standard interpolation method
is incompatible with these heuristics, since they require the target
function to be recomposed with some specific bricks from a set or
all of them. However, the proposed carving technique removes this
limitation. Additionally, the original heuristics produce a functionally
correct circuit only at the end of the algorithm, while the carving
technique produces one every time a base function is forced into the
circuit. This feature, besides offering a palette of implementations for
the input circuit, can also assist in tuning the bricks’ utility function.

We compare our carving technique with the standard Craig in-
terpolation method, which can also produce a new circuit structure
containing a set of desired base functions. Our results show that
our carving technique is able to successfully include a desired base
function 99% of the time, while the Craig interpolation method has a
failure rate up to 59%. We also study the runtime of our techniques.

The rest of the paper is organised as follows. First, we motivate
our work in Section II with an example. Next, in Section III, we
give background on the satisfiability problem, functional dependency,
Craig interpolation, the standard interpolation method, and Shannon
expansion. In Section IV, we describe in detail the proposed carving
methods. Finally, we present our experimental results in Section V
and conclude in Section VI.

II. MOTIVATING EXAMPLE

Assume we have already implemented the the sum function of a
2-bit adder

s1 = a1 ⊕ b1 ⊕ (a0 · b0)

using the base functions g1 = a1 ⊕ b1 and g2 = a0 · b0. Next, we
want to recompose the carry function of the same 2-bit adder

c1 = (a1 · b1) + (a0 · b0 · (a1 + b1))

and as additional base functions we have only g3 = a1 and g4 = b1.
We can now use a SAT-solver and the Craig interpolation method
to rewrite the target function c1 using the given set of base func-
tions G = {g1, g2, g3, g4}. Unfortunately, the standard interpolation
method might return arbitrarily any of the three dependency functions

h1 = (g3 · g4) + (g2 · (g3 + g4)),
h2 = (g3 · g4) + (g2 · (g3 ⊕ g4)), or

h3 = (g3 · g4) + (g2 · g1).

However, having already implemented s1 as above, we might be
interested in h3, which is the area-optimal solution and avoids
reimplementing existing logic.

h3

f

a1b1

g1

a1

g3

a0b0

g2 g4

b1

f

a1b1a0b0

Fig. 1: Representation of the target function c1 from Section II as a
function h3 of the set of base functions G. A dependency function
hi exists if and only if the function c1 functionally depends on the
set of base functions G.

Our carving method obtains exactly h3 by imposing g1 as a
primary input. Situations qualitatively similar to this one can arise
in a variety of logic synthesis situations such as techniques for
restructuring complex circuits into well studied architectures. This
example could also represent an ECO problem, if function s1 is
implemented flawlessly while function c1 has to be rectified.

III. BACKGROUND INFORMATION

In this section, we give the definitions of satisfiability problem,
functional dependency, Craig interpolation, the standard interpolation
method, and Shannon expansion.

A. Satisfiability Problem

J.-H. R. Jiang et al. [3] have shown that one can efficiently check if
a function can be expressed by a set of base functions by formulating
a satisfiability (SAT) problem. Furthermore, SAT solvers play a main
role in the construction of interpolants. In this subsection, we define
the SAT problem and the associated terminology.

A literal, l, is either a variable l = v or its negation l = v. A
disjunction (OR, +) of literals forms a clause, c = l1 + . . . + lk.
A propositional formula or a Boolean formula is a logic expression
defined over variables that take values in the set {0, 1}. To solve
a SAT problem, the propositional formula is converted into its
Conjunctive Normal Form (CNF) as a conjunction (AND, ·) of
clauses, F = c1 · . . . · ck [8].

Definition 1: A satisfiability (SAT) problem is a decision problem
that takes a propositional formula in CNF form and returns that the
formula is satisfiable (SAT) if there is an assignment of the variables
from the formula for which the CNF evaluates to 1. Otherwise, the
propositional formula is unsatisfiable (UNSAT).

SAT solvers also provide satisfying assignment when the problem
is SAT. Otherwise, modern SAT solvers, such as MiniSat [9], can
provide a proof of unsatisfiability, also called a refutation proof. To
define refutation proof, we need to first define the resolution principle.

Definition 2: Let c1 = x + R1 and c2 = x + R2 be any two
clauses, such that if there is a literal x in c1, then its complement, x,
is a literal in c2. The resolution principle says that the resolvent of
the clauses c1 and c2 is the disjunction R1 +R2, given that R1 +R2

is non-tautological. The literal x is called a pivot variable.
Definition 3: A refutation proof Π of a set of clauses C is a directed

acyclic graph (VΠ, EΠ), where EΠ is set of edges connecting the
vertices with their predecessor vertices, and VΠ, the set of vertices,
presents a set of clauses such that
• for every vertex c ∈ VΠ, c is either a root clause, such that

c ∈ C, or c is an intermediate clause and represents the resolvent
of its two predecessors c1 and c2, and

• the unique leaf vertex is an empty clause.

miter

f12
a2
b2

a1
b1

a1
b1

a1
b1

a2
b2

a2
b2

f12
f1
f2

f1
f2

g1

g1

g2

g2

Fig. 2: The circuit constructed for checking if the function f12, with
two outputs f1 and f2, and two inputs a and b, functionally depends
on the set of base functions G = {g1, g2}. Functional dependency
exists if and only if the miter evaluates to 0 for any two assignments
of the primary inputs, that is, the miter is UNSAT.

Essentially, the resolvent is a necessary clause for the conjunction
of the original clauses to be satisfiable, and the refutation proof shows
how to pair clauses to derive necessary conditions for satisfiability
until the result is a contradiction. For example, consider the UNSAT
set of clauses of Figure 3, which is further discussed in Section III-C:
the refutation proof asserts that the last two clauses can only be
satisfied if b = 0 and, therefore, can be replaced with their resolvent
(a+ c). Next, the clauses (a+d) and (a+ c) can be replaced by the
resolvent (c+ d), and so on until we obtain the leaf clause 0, which
proves that the original set of clauses is UNSAT. In Section III-C,
we show how the refutation proof is used for building an interpolant.

B. Functional Dependency

The check for functional dependency ensures that a given function
f can be expressed by a given set of base functions G. Additionally,
the necessary and sufficient condition of functional dependency helps
defining the construction of the circuits from which the interpolant
is built.

Definition 4: A function f(X) functionally depends on a set of
Boolean functions G = {g1(X), . . . , gn(X)}, defined over the same
variable vector X = (x1, . . . , xm), if there exists a Boolean function
h such that f(X) = h(g1(X), . . . , gn(X)) [3].
The functions f , gi, and h are called target function, base functions,
and dependency function, respectively.

As an example, consider the target function c1, the variable
vector X = (a0, b0, a1, b1), and the set of base functions G =
{g1, g2, g3, g4} given in Section II. Since the target function c1 can
be rewritten as any of the dependency functions h1, h2, or h3, it
follows that f functionally depends on the set of base functions G.
Figure 1 shows the target function c1 from Section II with one of its
dependency functions h3.

A base function gi ∈ G is an essential base function, if f
functionally does not depend on G when gi is removed from the set
G. Otherwise, gi is an auxiliary base function. For the motivating
example from Section II, given c1 as target function and the set
G = {g1, . . . , g4}, the base functions g2, g3 and g4 are essential,
while g1 is an auxiliary base function.

Next, we give the necessary and sufficient condition for functional
dependency that we use to construct the circuit for checking if a
function f functionally depends on a set of base functions G.

Theorem 1: Let f(X) be a target function and let G be a set of
Boolean functions G = {g1(X), . . . , gn(X)}, all defined over the

a)

g1

a b

g2

a b

a b

f

b)

fa2
b2

a1
b1

a1
b1

a1
b1

a2
b2

a2
b2

g1

g2

g1

g2
A (on-set)

B (off-set)

f
x1
x2

x1
x2

x1
x2

x3
x4

x3
x4

x3
x4

x5

x6

x7

x8

x9

x10 x13

x12

x11

x14

c)

(x1 + x2 + x6)
(x1 + x6)
(x2 + x6)

. . .
(x5)
(x14)
(x13)

d)

(x11+ x14) (x14) (x3 + x11) (x3)

 (x11) (x11)

 0

...

[x7][1][1][x6]

[x7][x6]

[x6 x7] = g1 g2

Fig. 4: The process for computing a single-output dependency function h(g1, g2), for the target function f(a, b) and the set of base functions
G = {g1, g2} is shown in Figure 4a. Figure 4b presents the DLN used for deriving the interpolant. The variable vector X = (x1, . . . , x14)
corresponds to the introduced CNF variables for each signal. The dashed line partitions the gates whose clauses belong to A and B,
respectively. The dots on this line depict the outputs of the base functions whose CNF variables are common between the on-set A and the
off-set B. Thus, these outputs are candidates for the support set of the dependency function. Figure 4c shows the same DLN represented as
CNF clauses, which are given to a SAT solver. Figure 4d shows the final clauses of the refutation proof from which the dependency function
h(g1, g2) = g1 · g2 is derived.

(d) (b)(a + b + c)(a + d)(c)

(a + c)

(c + d)

(d)

0

A B

[1][1]

[1]

[a]

[a][c]

[a c]

[0]

[a c]

Fig. 3: Computing an interpolant from the refutation proof of A =
(d) · (c) · (a + d) and B = (a + b + c) · (b) using McMillan’s
algorithm described with Definition 5. The intermediate clauses are
derived using the resolution principle defined in Section III-A. In
brackets, we give the Boolean formulas p(c) assigned to each clause
and the one assigned to the leaf clause, p(0) = a·c, is the interpolant.

variable vector X . For any two assignments P and Q of X , when
f(P) 6= f(Q), then the set G contains at least one base function
gi(X), for i = 1, . . . , n, such that gi(P) 6= gi(Q), if and only if,
the function f functionally depends on the set G [10].

Following Theorem 1, to check if a function f functionally depends
on a set of base functions G, we construct a miter circuit, which we
can transform to CNF clauses and give to a SAT solver. The miter
evaluates to 1 if and only if two assignments for the primary inputs P
and Q exist, for which each gi ∈ G evaluates to the same value and
at least one output of the function f evaluates to a different value.
The output that evaluates to a different value cannot be represented
as a function of G, and there is no functional dependency. Otherwise,
if the miter evaluates to 0 for all possible assignments of the primary
inputs, then f functionally depends on G. As an example, Figure 2
shows a miter constructed for a multiple-output target circuit.

C. Interpolant

In this subsection, we present the Craig interpolation theorem,
which was first proved by W. Craig [11], and we show the method
for constructing interpolants proposed by McMillan [12].

Theorem 2: Let (A, B) be a pair of sets of clauses, such that A ·B
is unsatisfiable. Then, there exists a formula P such that:
• A implies P ,
• P ·B is unsatisfiable, and
• P refers only to the common variables of A and B [11].
The formula P represents an interpolant of A and B. Given

the pair (A, B) and their refutation proof, a procedure called
interpolation system constructs an interpolant in linear time and space
in the size of the proof [12], [13] . Next, we explain the construction
of the interpolant through McMillan’s system [12].

Definition 5: Let (A, B) be a pair of clause sets and let Π be
their refutation proof. To all clauses c from Π, we assign a Boolean
formula p(c), such that
• if c is a root clause, and

– if c ∈ A, then p(c) is the disjunction of c’s global literals,
whose variable appear in both A and B, or

– if c /∈ A, then p(c) = 1;
• and if c is an intermediate clause, then let c1 and c2 be the

predecessor clauses of c, and let x be their pivot variable. Then,
– if x ∈ B, then p(c) = p(c1) · p(c2), or
– if x /∈ B, then p(c) = p(c1) + p(c2).

The Π-interpolant of (A, B) is the Boolean formula assigned to the
leaf clause p(0) [12].

The Boolean circuit representing the interpolant is constructed
by substituting the intermediate vertices and the leaf with gates
corresponding to the executed operation between their predecessors.
Figure 3 shows how the interpolant for A = (d) · (c) · (a + d) and
B = (a+b+c)·(b) is constructed by following McMillan’s algorithm.

D. The Standard Interpolation Method

J.-H. R. Jiang et al. [3] suggested using interpolation to re-express
a target function as some dependency function over other base
functions (also used by C.-H. Lin et al. [14]). Figure 4b shows
the Dependency Logic Network (DLN) required for computing the
dependency function h of the target function f in terms of the set
of base functions G = {g1, g2}. The DLN has similar properties

as the miter shown in Figure 2, and can be used for the functional
dependency check of a single-output function. Thus, if f functionally
depends on the set of base functions G, then we can represent the
DLN as a set of CNF clauses partitioned into two sets A and B as
suggested by J.-H. R. Jiang et al. [3]. The Tseitin Transformation [15]
converts a circuit from combinational logic to a set of CNF clauses
by introducing new variables for each primary input and for each
gate. The SAT solver receives as input the CNF clauses, constrains
the CNF variables assigned to the two copies of the primary inputs
of the target function, and produces a refutation proof from which
the interpolant is computed. Since the CNF variables of the outputs
of one copy of the base functions belong both to the on-set A and to
the off-set B, these outputs represent candidate inputs for the support
set of the interpolant and, implicatively, for the dependency function.
Figure 4 shows the process for computing the dependency function
with this standard interpolation method.

E. Shannon Expansion

Shannon expansion [16] is a fundamental theorem used for sim-
plification and optimisation of logic circuits.

Theorem 3: Any Boolean function f defined over a variable vector
X = (x1, . . . , xn), can be written in the form

f = xi · fxi + xi · fxi ,
where fxi = f(x1, . . . , 0, . . . , xn) and fxi = f(x1, . . . , 1, . . . , xn).

The expressions fxi and fxi represent, respectively, a negative and
positive cofactor of f with respect to the control variable xi.

IV. THE CARVING INTERPOLATION METHOD

In this section, we first explain the deficiency of the standard
interpolation method and we then present in detail the carving
interpolation method proposed in this paper.

A. Deficiency of the Standard Interpolation Method

A base function belongs to the support set of the dependency
function if and only if its clauses are part of the refutation proof.
All essential base functions belong to the support set, because their
clauses are required for building a refutation proof. However, whether
an auxiliary base function belongs to the support set depends on the
selection of the SAT solver. Since the SAT solver does not consider
the importance of a base function while building the refutation proof,
the standard interpolation method often omits base functions that
enable a specific implementation of the target function.

On the other hand, some techniques require some specific or
all selected base functions to be used as primary inputs of the
dependency function. For instance, A. K. Verma et al. [7] propose
an algorithm that optimises a circuit by iteratively generating and
selecting a set of base functions. After the first iteration, it uses the
dependency function to generate a new set of base functions. Thus,
if a base function is disconnected from the dependency function,
then it is discarded, although it was previously selected as an
adequate and desirable base function for reconstructing the circuit.
Therefore, this behaviour of the standard interpolation method hinders
its applicability to such logic synthesis techniques.

B. Carving Out a Base Function

In this subsection, we describe in detail the carving interpolation
method for imposing the use of a single base function by constructing
a dependency function as a Shannon expansion of two constrained
Craig interpolants.

Assume we have a target function that functionally depends on
a set of base functions from which we want to impose the use of
a selected base function. For the carving interpolation method, we

f

a b c d

h1
'

g1 g3

h1

g1 bcd

...
add logic

of G1

g1 g2

bcg1

g3

dcb

carve out g2

given h1 & G1

g1 g2

bcg1

g3

dcb

carve out g1

given f & G

g2

cb

g3

dcb

g1

ab

Fig. 5: The process for imposing the first base function g1 from
the set of base functions G = {g1, g2, g3}. After a base function is
imposed, it is substituted with an identity function in the set G. To
impose the second function g2, the carving method is given the last
computed interpolant h1 and the modified set of base functions G1.

construct the same DLN as for the standard interpolation method
and represent it as a set of CNF clauses.

Assume the CNF clauses are expressed in terms of the variable
vector X = (x1, . . . , xn). We denote this set of CNF clauses
as C(x1, . . . , xn). The unsatisfiability of the SAT problem defined
with the DLN signifies that the set of CNF clauses is UNSAT
for any assignment of X . From this, it follows that both Cxi =
C(x1, . . . , 0, . . . , xn) and Cxi = C(x1, . . . , 1, . . . , xn), in which
we have assigned the variable xi to 0 and 1, respectively, are also
UNSAT for any assignments of X . A CNF variable is assigned to a
constant value by extending the existing set of CNF clauses with a
single-variable clause xi or xi, which makes an assumption that the
variable xi evaluates to 1 or 0, respectively.

Using the refutation proofs for Cxi and Cxi , we can construct two
constrained interpolants Ixi and Ixi , respectively. These two inter-
polants represent the cofactors of a feasible interpolant I for the sat-
isfiability problem expressed with the set of clauses C(x1, . . . , xn),
with respect to xi. Thus, using the formula for Shannon expansion,
we can generate the interpolant I as

I = xi · Ixi + xi · Ixi .

In order to impose a selected base function gi, we perform the
Shannon expansion with respect to the CNF variable xi assigned to
the output of the function gi. When we assign the variable xi to 0, we
evaluate all assignments for which the function gi evaluates to 0. At
the same time, for the assignments for which gi evaluates to 1, there is
a conflict with the assumed value of the output of gi and the problem
is UNSAT. Similarly, the dual case applies for the assignments for
which gi evaluates to 1. Thus, the two interpolants, built for the
assignments for which the selected base function gi evaluates to 0
and 1, respectively, represent the negative and the positive cofactors
of the dependency function with respect to xi, and they can be used
to obtain the final dependency function with Shannon expansion.

C. Carving Out a Set of Base Functions

Given a set of base functions G = {g1, . . . , gn}, such that the
target function f functionally depends on G, the base functions are
iteratively carved out one by one. To carve out the first base function
g1, we use the function f and the set G. As a result we receive a
dependency function h′1 that has the imposed base function g1 and
a subset of the remaining base functions from G as primary inputs.
To retain g1 as a primary input, after carving it out, we modify G to
G1 by substituting g1 with an identity function, which propagates the
input as an output. To be able to impose the remaining base functions,
we construct a function h1 by adding the logic of the non-imposed
base functions to the function h′1. In the next iterations, to impose
the base function gi, where i = 2, . . . , n, we use the dependency
function hi−1 and the modified set of base functions Gi−1. Figure 5

generated interpolants = 2n
Shannon expansions = n

h1 = g1 I(fg1) + g1 I(fg1)

h2 = g2 I(h1g2) + g2 I(h1g2)

h3 = g3 I(h2g3) + g3 I(h2g3)

a b

f

c d

g3

cd

g1

g1

g2

g2

h1

g1 bc d

h2

g1g2 cd

h3

g1g2 g3

g1 g3

cdg1

g2

bc

g2

bc

g3

cd

g1

ab

(a) Carving the base functions one by one.

generated interpolants = 2n

Shannon expansions = 1

a b

f

c d

g1

ab

g2

bc

g3

cd

h1

g1g2 g3

h1 = g1g2g3I(fg1g2g3) + ... + g1g2g3I(fg1g2g3)

(b) Carving multiple base functions simultaneously.

Fig. 6: To carve out n base functions successively, we need to
compute only 2n interpolants. On the other hand, to carve them out
simultaneously, we must compute 2n interpolants.

shows the first iteration of our method when imposing a set of base
functions G = {g1, g2, g3} given a target function f .

Carving a set of base functions by our method is usually much
slower than by the standard interpolation method, because our method
builds two interpolants per base function, while the standard method
generates only one interpolant per layer. Accordingly, since we know
that the standard interpolation method always uses the essential base
functions, we propose an optimised carving method that improves
the runtime by generating a single interpolant for all essential base
functions. Moreover, it increases the success rate for imposing the set
of base functions, since it prioritises the auxiliary base functions and
carves them out when all or most of the circuit’s logic is available.

The optimised carving method starts with partitioning the set G
into two subsets, Ge and Ga, which contain the essential and aux-
iliary functions, respectively. Then, we carve out the base functions
from the set Ga, which might be omitted by the standard interpolation
method, as explained in Section IV-A. Assuming that the set Ga

contains i base functions, once all functions are carved out, we have
constructed the function hi and the set G was modified to Gi. Finally,
the standard interpolation method is used to construct the resulting
dependency function by re-expressing the function hi as a function
from the set Gi. For example, taking the target function f and the set
G from Figure 5, we first impose the function g2 ∈ Ga and obtain
the function h1 instead of first imposing the function g1 as shown
for the basic carving method. Next, instead of imposing the functions
from Ge = {g1, g3}, we generate the final dependency function with
the standard interpolation method given the function h1 as a target
function and the set G1 = {g1, g2id, g3}, where g2id is the identity
function introduced for g2.

Shannon expansion can also be performed on multiple variables.
Thus, in one iteration, multiple base functions can be simultaneously
carved out of the target function. However, as Figure 6 shows, due
to the nature of the Shannon expansion, the number of interpolants

a b

f

c
carve out g1

given f & G

g1

ab ba c

ba c h1

g1 bca

Fig. 7: The setup for imposing the base function g1 using the carving
method. The base functions are always expressed as functions of the
primary inputs, thus the selected base function is accompanied with
the essential identity functions of the target function’s primary inputs
a, b, and c. After deriving the dependency function h1, we test if g1

is used as a primary input.

required for simultaneous carving out multiple base functions grows
exponentially with the number of base functions carved out simulta-
neously, in contrast with the linear growth of the one-by-one single-
function carving.

V. EXPERIMENTAL RESULTS

In this section, we introduce our experimental setup and we present
the experimental results which compare our carving methods with the
standard interpolation method.

A. Experimental Setup

We implemented both the basic and the optimised carving inter-
polation methods described in this paper as commands in ABC [17].
ABC is an open-source software system for synthesis, technology
mapping, and formal verification of sequential Boolean logic circuits
used in synchronous hardware design. ABC relies heavily on the And-
Inverter Graph (AIG) data structure, which represents a multi-level
logic network composed of two-input AND gates and inverters. AIGs
enable short runtimes and high-quality results for synthesis, mapping
and verification due to their simplicity and flexibility. Another advan-
tage is that the modern SAT solver MiniSat is integrated into ABC,
and it provides the proof of unsatisfiability for UNSAT problems.

Although the carving technique is general and not tied to any pur-
pose or logic synthesis heuristic, our experimental setup is somewhat
inspired from the Iterative Layering technique proposed by A. K.
Verma et al. [7]. That heuristic restructures a circuit by gradually
imposing a set of preselected base functions. Reimplementing the
whole algorithm is not our purpose here, but we want to explore
interpolation as the means to progressively transform the original
circuit into the optimised one (note that the original authors of Itera-
tive Layering do not use SAT solvers and follow a different strategy).
In our experiments, we thus use an oracle that gradually provides the
base functions for composing the optimal circuit structure.

To ABC, we provide an input implementation and a final imple-
mentation of the circuit we want to optimise. The final implementa-
tion, which is either a desirable known implementation of the circuit
or the input implementation optimised in ABC, serves as a reference
goal from which the oracle computes the set of base functions for
reconstructing the circuit. In our case, this set consists of the logic
functions of non-overlapping k-input cuts which cover the whole
circuit. With this setup, we show that we can recompose any input
implementation to any final implementation as long as we have the
adequate base functions. Two scenarios are presented: in the first, we
carve out only one base function; in the second, we carve out the
whole layer as described in Section IV-C.

For our experiments, we use the 10 large combinational MCNC
benchmarks and a set of 35 arithmetic circuits, including adders,

10-0.5 1 10
0

50

100

150

200

Relative execution time [tcarving/tstandard]

N
um

be
ro

fr
ea

lis
at

io
ns

100.5 101.5

(a) Arithmetic benchmarks.

0

50

100

150

200

Relative execution time [tcarving/tstandard]

N
um

be
ro

fr
ea

lis
at

io
ns

10-0.5 1 10100.5 101.5

(b) Area-optimised MCNC benchmarks.

Fig. 8: The relative execution time to generate a dependency function
for a base function set composed of a single base function and
essential identity functions.

leading zero detectors, multipliers and majority functions. When
the benchmark is a multiple-output circuit, we process each output
separately, since the interpolation methods can process only a single
output at a time. The results are described in detail in the follow-
ing subsections, while Table I summarises the failure rates of the
interpolation methods.

B. Imposing a Single Base Function

For the following experiment, the oracle provides the complete set
of base functions G and, for each gi ∈ G, we would like to construct
a dependency function that has the function gi in its support set.

In order to create a dependency function, the target function f
should functionally depend on the given set of base functions. Thus,
to impose a single base function gi, we first form a set Gi which
contains the function gi and all identity functions of the primary
inputs of the target function. Next, we remove the added identity
functions that are auxiliary given the function f and the set Gi. Thus,
Gi contains only the identity functions of the primary inputs that
are essential for achieving functional dependency and the function
gi. If a removed identity function represents a primary input that
is also a primary input of gi, both the standard and the carving
method must use gi to recreate the target function. Otherwise, if the
identity functions of all primary inputs of gi are given, then several
dependency functions exist—some that use the function gi, and other
that reimplement its logic with the identity functions given with Gi.
Figure 7 shows the setup for imposing the base function g1 with the
carving method.

In our experiment, when it is possible to return a dependency
function that omits the selected base function, we count the number
of missed opportunities to use the base function for the two interpo-
lation methods. For the arithmetic circuits, the standard interpolation
method fails to use the selected base function in 55.71% of the
cases, while the carving method always imposes it. For the MCNC
benchmarks, when the input structure of the circuits is optimised for
area, we observe 59.12% and 0.15% failure rate for the standard
method and the carving method, respectively. On the other hand,

s 4

2 2

1 0 2 1

a 3 b 3

1 1 2 0

1 2 1 9

a 2 b 2

1 51 8

1 3 1 41 61 7

a 1 b 1 a 0 b 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Fig. 9: Non-overlapping 3-input cuts and the formed layers for the
most significant bit of a 4-bit adder. The rounded sets represent the
3-input cuts whose logic functions are the base functions. The dashed
lines divide the cuts in layers. The small ovals show the signals for
which an identity function is introduced because they are primary
inputs to base functions from a higher layer.

when the input structure is optimised for delay, we obtain 56.40%
and 0.15% failure rate, respectively.

Regarding the runtime of the two methods, as expected, the carving
method takes on average twice the time required by the standard
interpolation method, since the dependency function is derived from
two interpolants instead of one. Figure 8 shows the distribution of
the relative execution time for the arithmetic circuits and the area-
optimised MCNC benchmarks.

C. Imposing a Set of Base Functions

For the following experiment, the oracle provides the complete set
of base functions partitioned into subsets, called layers, on which the
input circuit functionally depends. Each layer contains base functions
that have only outputs of the previously composed layers as primary
inputs. An identity function is introduced for each base function
propagated through the layer. Figure 9 presents one possible solution
for the cuts and layers for the most significant bit of a 4-bit adder.

In Section IV-C, we presented two carving methods: the basic
carving method that imposes all functions from a given set suc-
cessively, and the optimised carving method that first imposes the
auxiliary functions and then generates the final dependency function
using the standard interpolation method presented in Section III-D.
To compare these with the standard interpolation method, we generate
one dependency function using each of the three methods for each
layer received from the oracle. To show the gradual reconstruction of
the circuit using layers, Figure 10 highlights the area and delay of the
recomposed circuit of the MSB of a 14-bit adder after the dependency
function is built for each of the 10 layers. For each layer, we have
verified that the resultant implementation is functionally equivalent
to the target function given as input.

If all the base functions from a layer are essential base functions,
then all of them are always used by the standard interpolation method
and there is no need to use the carving method. However, if there
is at least one auxiliary base function which might be omitted, we
consider each layer from which at least one base function was not
included in the support set of the built dependency function as failure.

For the arithmetic circuits, at least one base function from the layer
is omitted for 74.59% of the layers when the dependency function is

TABLE I: Summary of the experimental results for the failure rates of the interpolation methods.

Imposing a Single Base Function Imposing a Set of Base Functions

Number of disconnected Number of layers with at least Number of disconnected base
imposed base functions one omitted base function functions among all layers

Carving Carving

Standard Carving Standard Basic Optimised Standard Basic Optimised

Arithmetic Circuits 55.71% 0.00% 74.59% 0.26% 0.07% 64.02% 0.17% 0.04%
Large MCNC (area-optimised) 59.12% 0.15% 81.82% 83.33% 54.55% 34.00% 26.55% 19.85%
Large MCNC (delay-optimised) 56.40% 0.15% 92.89% 83.76% 76.14% 77.56% 34.30% 30.77%

0
10
20
30
40
50
60
70
80
90

0 1 2 3 4 5 6 7 8 9 10

A
re

a
(#

A
N

D
G

at
es

)

Standard ‐ Dependency Function
Standard ‐ Base Functions
OptCarving ‐ Dependency Function
OptCarving ‐ Base Functions

0 1 2 3 4 5 6 7 8 9 10
Layer #

(a) Area comparison of the standard interpolation and the optimised
carving method.

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

D
e

la
y

(#
Le

ve
ls

)

Standard
OptCarving

0 1 2 3 4 5 6 7 8 9 10
Layer #

(b) Delay comparison of the standard interpolation
and the optimised carving method.

Fig. 10: Area and delay of the MSB of a 14-bit adder, reconstructed
using 10 layers. The area is expressed in terms of number of AND
gates, while the delay is expressed as number of levels of the AIG.
For each layer, Figure 10a shows the cumulative area of the base
functions and the area of the dependency function built with the
standard method and with the optimised carving method, respectively.
Figure 10b compares the delay of the same circuits. In layers 2 and 3,
the optimised carving method offers a solution that has lower delay
and equal area as the final reference circuit from layer 10, which was
obtained by optimising the input circuit from layer 0 in ABC.

constructed by the standard interpolation method. In contrast, the
basic and the optimised carving method fail to use at least one
base function for only 0.26% and 0.07% of the layers, respectively.
Although we expected similar results for the MCNC benchmarks,
when the input structure of the circuits is optimised for area, we
obtain 81.82% failure rate for the standard method, while for the
base and the optimised carving method, the failure rates are 83.33%
and 54.55%, respectively. For the same benchmarks, when the input
structure is optimised for delay, the failure rates are 92.89% for
the standard interpolation method, and 83.76% and 76.14% for the
standard and optimised carving method, respectively.

These failure rates arise because we consider a failed layer as soon
as a single base function is disconnected. For instance, for a given
layer, even if the standard method has omitted five functions, while

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ad
d

su
b

4
_1

p
re

f
(i

:9
, o

:5
/5

)

ad
d

su
b

4
_2

rc
a

(i
:9

, o
:5

/5
)

cs
a3

 (
i:6

, o
:4

/4
)

lz
d

6
 (

i:6
, o

:3
/3

)

lz
d

8
 (

i:8
, o

:3
/3

)

lz
d

1
6

 (
i:1

6
, o

:4
/4

)

m
aj

o
ri

ty
O

f5
 (

i:5
, o

:1
/1

)

m
u

lt
3

 (
i:6

, o
:6

/6
)

m
u

lt
9

 (
i:1

8
, o

:1
8

/5
)

m
u

lt
1

2
 (

i:2
4

, o
:2

4
/5

)

p
fa

4
 (

i:8
, o

:5
/5

)

p
re

f4
 (

i:8
, o

:5
/5

)

rc
a3

 (
i:6

, o
:4

/4
)

rc
a4

 (
i:8

, o
:5

/5
)

rc
a5

 (
i:1

0
, o

:6
/6

)

rc
a6

 (
i:1

2
, o

:7
/7

)

rc
a7

 (
i:1

4
, o

:8
/8

)

rc
a8

 (
i:1

6
, o

:9
/9

)

rc
a9

 (
i:1

8
, o

:1
0

/1
0

)

rc
a1

0
 (

i:2
0

, o
:1

1
/1

1
)

rc
a1

1
 (

i:2
2

, o
:1

2
/1

2
)

rc
a1

2
 (

i:2
4

, o
:1

3
/1

3
)

rc
a1

3
 (

i:2
6

, o
:1

4
/1

4
)

rc
a1

4
 (

i:2
8

, o
:1

5
/1

1
)

rc
a1

5
 (

i:3
0

, o
:1

6
/1

3
)

rc
a1

6
 (

i:3
2

, o
:1

7
/1

1
)

rc
a2

4
 (

i:4
8

, o
:2

5
/1

2
)

rc
a3

2
 (

i:6
4

, o
:3

3
/1

2
)

rc
a6

4
 (

i:1
2

8
, o

:6
5

/1
2

)

av
er

ag
e

U
n

u
se

d
B

as
e

Fu
n

ct
io

n
s

(%
)

5‐input cuts
Arithmetic Circuits

Standard
Carving
OptCarving

(a)

0%
10%
20%

30%
40%

50%
60%
70%

80%
90%

100%

al
u

4
 (

i:1
4,

 o
:8

/4
)

ap
ex

2
 (

i:3
9,

 o
:3

/3
)

d
es

 (
i:2

5
6

, o
:2

4
5

/2
4

5
)

ex
5

p
 (

i:8
, o

:6
3

/3
2

)

se
q

 (
i:4

1
, o

:3
5

/2
)

sp
la

 (
i:1

6
, o

:4
6

/6
)

av
er

ag
e

al
u

4
 (

i:1
4,

 o
:8

/4
)

ap
ex

2
 (

i:3
9

, o
:3

/3
)

ap
ex

4
 (

i:9
, o

:1
9

/1
)

d
es

 (
i:2

5
6,

 o
:2

4
5

/2
45

)

ex
5

p
 (

i:8
, o

:6
3

/3
3

)

se
q

 (
i:4

1
, o

:3
5

/2
)

sp
la

 (
i:1

6
, o

:4
6

/5
)

av
er

ag
e

U
n

u
se

d
 B

as
e

Fu
n

ct
io

n
s

(%
)

MCNC Benchmarks (delay‐optimised)

Standard
Carving

OptCarving

3‐input cuts 8‐input cuts

(b)

Fig. 11: The percentage of disconnected base functions among all
layers for the three methods. For the presented benchmarks, the base
functions are generated using 5-input cuts for the arithmetic circuits,
and using 3- and 8-input cuts for the large combinatorial delay-
optimised MCNC benchmarks. From the MCNC benchmarks, we
were able to process at least one output within the given timeout only
for the shown benchmark circuits. The formatting of the benchmarks
shows their name, the number of primary inputs and outputs, as well
as the number of processed outputs for which we report results. For
example, the last arithmetic circuit, rca64, has 128 primary inputs
and 65 primary outputs, but we processed only the first 12 outputs.

the carving method has omitted only one, we determine that both
methods give a 100% failure rate. We also analysed the number of
disconnected base functions among all layers. The most drastic differ-
ence is observed for the large delay-optimised MCNC benchmarks,
for which the standard interpolation method omits 77.56%, while the
standard carving and the optimised carving methods omit 34.30%

0

20

40

60

Relative execution time [tcarving/tstandard]

N
um

be
ro

fr
ea

lis
at

io
ns

1 10 102 103 104 105 106

(a) The basic carving method is almost always slower than the standard
interpolation method, since it computes two interpolants per base function
instead of one for the whole set.

0

20

40

60

80

100

Relative execution time [toptcarving/tstandard]

N
um

be
ro

fr
ea

lis
at
io
ns

1 10 102 103 104 105 106

(b) The optimised carving method improves over the basic carving
method since it computes one interpolant for the essential base functions.

Fig. 12: Comparison of the execution time of the carving methods
with the the standard interpolation method for the arithmetic circuits
when generating a dependency function for a set of base functions.

and 30.77% of the base functions among all layers, respectively. The
results for the other benchmarks are presented in Table I. To analyse
the failures in further detail, Figure 11 shows that the carving methods
usually have lower failure rates than the standard method, but fail
most often in circuits on which both fail.

The basic carving interpolation method builds two interpolants
for each base function of the layer, while the standard interpolation
method constructs one interpolant per layer. Thus, the runtime of the
first is, in most cases, significantly higher than the one of the second.
Due to the extensive runtime, we fail to execute the algorithm for all
the outputs for 28% of the larger MCNC benchmarks. On the other
hand, for the smaller MCNC benchmarks and the arithmetic circuits,
we fail to complete the algorithm for only 2% and 4% of the circuits,
respectively. Figure 12 shows the distribution of the relative execution
time for the arithmetic circuits.

The optimised carving method, as expected, spends some time on
dividing the base functions into auxiliary and essential functions,
it is generally much faster than the basic carving method. Also, as
expected it succeeds more often in imposing the base functions, since
it gives a priority to the ones that might be omitted.

VI. CONCLUSIONS

With this paper, we present a new technique to enable the re-
structuring of an input circuit while imposing a given subcircuit or
base function. Our results show that the proposed carving technique
is able to successfully include the desired base functions most of
the time (more than a 99% success rate when forcing a single base
function), while the reference technique, based on Craig interpolation,
fails far more often. For instance, the success rate of the standard
interpolation method for the large area-optimised MCNC benchmarks
barely reaches 40%. Our results also show that our carving technique
is moderately slower than the standard interpolation method when
forcing a whole set of base functions, but takes only about twice the
time when forcing a single base function. This is mostly because the

carving technique requires more SAT solver calls than the reference
technique. To impose a set of base functions, we also propose an
optimised carving method that represents a hybrid of the basic carving
method and the standard interpolation method. This method offers the
best failure rate and significantly improves the runtime required for
carving, but is still slower than the standard interpolation method.
We believe that heuristics for global circuit restructuring as well
as synthesis-based ECO algorithms can benefit from our carving
technique to optimise circuits of limited size.

REFERENCES

[1] H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee, “To SAT or not to SAT:
Ashenhurst decomposition in a large scale,” in Proceedings of the
International Conference on Computer Aided Design, San Jose, Calif.,
Nov. 2008, pp. 32–7.

[2] R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung, “Bi-decomposing large
boolean functions via interpolation and satisfiability solving,” in Pro-
ceedings of the 45th Design Automation Conference, Anaheim, Calif.,
Jun. 2008, pp. 636–41.

[3] J.-H. R. Jiang, C.-C. Lee, A. Mishchenko, and C.-Y. R. Huang, “To
SAT or not to SAT: Scalable exploration of functional dependency,”
IEEE Transactions on Computers, vol. C-59, no. 4, pp. 457–67, Apr.
2010.

[4] K.-F. Tang, C.-A. Wu, P.-K. Huang, and C.-Y. R. Huang, “Interpolation-
based incremental ECO synthesis for multi-error logic rectification,” in
Proceedings of the 48th Design Automation Conference, San Diego,
Calif., Jun. 2011, pp. 146–51.

[5] B.-H. Wu, C.-J. Yang, C.-Y. R. Huang, and J.-H. R. Jiang, “A robust
functional ECO engine by SAT proof minimization and interpolation
techniques,” in Proceedings of the International Conference on Com-
puter Aided Design, San Jose, Calif., Nov. 2010, pp. 729–34.

[6] A. K. Verma, P. Brisk, and P. Ienne, “Progressive Decomposition: A
heuristic to structure arithmetic circuits,” in Proceedings of the 44th
Design Automation Conference, San Diego, Calif., Jun. 2007, pp. 404–
9.

[7] ——, “Iterative Layering: Optimizing arithmetic circuits by structuring
the information flow,” in Proceedings of the International Conference
on Computer Aided Design, San Jose, Calif., Nov. 2009, pp. 797–804.

[8] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability
solvers,” in Handbook of Knowledge Representation, ser. Foundations
of Artificial Intelligence, F. van Harmelen, V. Lifschitz, and B. Porter,
Eds. Elsevier, Jan. 2008, vol. 3, pp. 89–134.

[9] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proceedings of
the International Conference on Theory and Applications of Satisfiability
Testing, ser. Lecture Notes in Computer Science, vol. 2919. Springer,
May 2003, pp. 502–18.

[10] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for verification
reduction,” in Proceedings of the International Conference on Computer
Aided Verification, Boston, Mass., Jul. 2004, pp. 268–80.

[11] W. Craig, “Linear reasoning. A new form of the Herbrand-Gentzen
theorem,” The Journal of Symbolic Logic, vol. 22, no. 3, pp. 250–68,
Sep. 1957.

[12] K. L. McMillan, “Interpolation and SAT-based model checking,” in
Proceedings of the International Conference on Computer Aided Ver-
ification, ser. Lecture Notes in Computer Science, vol. 2725. Springer,
Jul. 2003, pp. 1–13.

[13] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” The Journal of Symbolic Logic, vol. 62, no. 3,
pp. 981–98, Sep. 1997.

[14] C.-H. Lin, C.-Y. Wang, and Y.-C. Chen, “Dependent-latch identification
in reachable state space,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. CAD-28, no. 8, pp. 1113–26,
Aug. 2009.

[15] G. S. Tseitin, “On the complexity of derivation in propositional cal-
culus,” in Automation of Reasoning 2: Classical Papers on Computa-
tional Logic 1967-1970, ser. Symbolic Computation, J. Siekmann and
G. Wrightson, Eds. Berlin: Springer, 1983, pp. 466–83.

[16] C. E. Shannon, “The synthesis of two-terminal switching circuits,” The
Bell System Technical Journal, vol. 28, no. 1, pp. 59–98, Jan. 1949.

[17] ABC: A System for Sequential Synthesis and Verification, Berkeley Logic
Synthesis and Verification Group, Berkeley, Calif., Mar. 2014, release
40301, http://www.eecs.berkeley.edu/˜alanmi/abc/.

