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Abstract—Carry chains facilitate the implementation of adders
and improve the performance of arithmetic circuits in FPGAs.
The last version of the commonly used open-source Verilog-to-
Routing (VTR) CAD flow now enables modelling carry chains
in FPGA architectures. However, one of the shortcomings of the
existing flow lies in its inability to identify arithmetic operations
when described as gate-level circuits. Moreover, the VTR flow
squanders most of the LUTs preceding the chain logic. This paper
focuses on these two problems and proposes preprocessing the
circuit before technology mapping to allow for a more efficient
use of carry chains. The first proposed method maps logic on the
carry chains for circuits expressed using a gate-level description.
On average, it identifies about 30% more meaningful full adders
than the existing tool flow operating on the RTL descriptions.
Area is thus improved by up to 15% with an average of 6%
for almost no delay penalty. Secondly, we increase the use of the
LUTs preceding the chain logic by a factor 2 on average. This
reduces delay (up to 9%) and area (up to 2%), compared to
the existing VTR flow. The new approach is independent of the
specific carry-chain architecture and can be generically adapted
to any FPGA with built-in hardened adders.

I. INTRODUCTION

Modern Field-Programmable Gate Array (FPGA) architec-
tures have dedicated circuitry to boost the performance of
arithmetic operations. Such circuitry includes Digital Signal
Processing (DSP) blocks, multipliers, and carry chains. The
latter, which are the focus of this paper, are designed to reduce
the critical path and area of adders and subtractors. In typical
FPGAs, each logic block includes one or more components of
chain logic whose architecture depends on the manufacturer.
For example, some carry chains have a ripple-carry struc-
ture [1], while others have a carry-lookahead structure [12].
Altogether, carry chains exhibit two main properties: (1) they
offer almost null routing delay between two adjacent carry-
chain nodes, as illustrated in Figure 1, and (2) they include
dedicated full-adder circuitry to be able to implement adders
with minimum utilisation of Look-Up Tables (LUTs).

How to better use available carry chains is still an open
research question. The standard approach is to use carry chains
only when the arithmetic operations are defined by high-level
primitives (e.g., ‘+’ operator) in a Register-Transfer Level
(RTL) language. For example, Verilog-to-Routing (VTR), the
de facto academic tool flow for FPGA architectural and CAD
research [5], uses such an approach. However, this is not

always optimal nor possible. In some cases, the RTL code is
not available because the design comes as a gate-level netlist.
Additionally, suboptimal mapping decision can be made by
assigning adders to carry chains before technology mapping
(i.e., design step that transforms the gate-level description of
the input into a network of LUTs). Luu et al. [6] have recently
shown that using carry chains provides an average speed up
of approximately 15% for an area penalty of approximately
5%. However, in some benchmarks using carry chains led to
slower and bigger circuits. Accordingly, intelligent heuristics
for when the carry chains should be used is certainly necessary,
and it should consider the interaction between the chain and
the configurable logic of the FPGA. Furthermore, carry chains
may be useful in other contexts that have no equivalent
operators at RTL level, such as compressor trees [9] and
perhaps XOR-rich cryptographic functions. Such opportunities
are missed by standard tools and can only be addressed by a
tedious and careful manual restructuring of the circuit.

In this paper, we address some of the shortcomings of
RTL-based carry-chain detection and propose an alternative
approach to improve the current support of carry chains in
VTR. Firstly, we present an automatic mapping to carry
chains for circuits expressed with a gate-level description. On
average, we identify about 30% more adders than the original
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Fig. 1: Two types of interconnect between FPGA logic blocks.
(a) Typically, logic blocks are interconnected by the local
or global programmable interconnect. (b) A fast hardwired
connection of the chain logic introduced for an efficient
implementation of arithmetic circuits.978–1–4673–9091–0/15/$31.00 c©2015 IEEE
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Fig. 2: An example of arithmetic mode configurations. In
arithmetic mode, hard adders with a dedicated carry chain
are used along with some LUTs to compute their inputs.
Different configurations of the LUTs are possible: (a) A typical
configuration where the LUTs share multiple inputs and (b) a
particular view of the previous configuration where part of the
flexibility is relinquished to make each logic cell (adder with
two LUTs) completely independent from the other.

VTR flow, which leads to 6% reduction in area for no change
in delay. Secondly, we better exploit the LUTs that are in
front of the hardened carry chain by premapping useful logic
onto them instead of just bypassing signals. We show that our
method increases the use of these LUTs by a factor of 2, on
average (excluding inverters and buffers); this achieves up to
9% reduction in delay and 2% reduction in area compared to
the original VTR flow. Our code is open-source (available at
http://lap.epfl.ch/downloads) and can be easily
integrated in the VTR flow for further research.

The rest of the paper is organised as follows. Section II
summarises limitations of the tools we have studied and out-
lines our goals. Next, we describe our heuristics for automated
mapping on carry chains for gate-level circuits in Section III
and for mapping logic to the carry-chain LUTs in Section IV.
After presenting our experimental setup in Section V, we
present and discuss our experimental results in Section VI.
Finally, we describe the state-of-the-art in Section VII before
we conclude and present ideas for future work in Section VIII.

II. MAKING GOOD USE OF HARDENED ADDERS

In this section, we describe typical carry chains and the
ordinary CAD flow that maps designs unto them. Then, we
review the limitations we observed in commercial tools as
well as VTR, and outline how we proceed about them in the
following sections.

A. Carry Chains and Hard Adders

Practically all commercial implementations of carry chains
rely on a special configuration mode of the basic logic
block that involves hardened adders. As mentioned in the
introduction, various implementations of the same idea exist,
ranging from chains of full adders (the very reason for the

term carry chain) to moderate size carry-lookahead blocks.
All these architectures have in common (1) the existence of
a hardened carry logic, (2) the presence of some LUTs in
front of it, and (3) some connectivity constraints on the inputs
of the LUTs. For instance, Figure 2a shows a logic block
in arithmetic mode mimicking the Adaptive Logic Module
(ALM) of an Altera Stratix V FPGA [1]. The two hardened full
adders are connected through the carry signal, implementing
a complete 2-bit ripple-carry adder, and receive their inputs,
each, from two 4-LUTs. In this mode of operation, all four
4-LUTs share some inputs, which constrains the packing of
logic functions onto them.

B. Discovering Carry Chains

To the best of our knowledge, confirmed by our experiments
with various vendors tools, commercial CAD flows infer
adders only or almost only when the arithmetic operators plus
(‘+’) and minus (‘−’) are used in RTL. VTR supported hard
adders and carry chains for the first time in version 7.0 and,
for that purpose, the front-end ODIN-II was modified to detect
addition and subtraction operations in the Verilog description
of the circuits. In this simple heuristic to infer the use of
hardened adders, one can typically specify a minimum bit
width for which such adders are generated, because, in general,
they are not beneficial for small bit widths (e.g., 2–3 bits). In
this approach, identified hard adders are then provided as black
boxes to the synthesizer and the technology mapper, and as
such, they will never be modified or optimised after this point
in the tool flow. We argue that this is not the best approach to
discover carry chains: mainly, (1) it is impossible to discover
chains in circuits where adders are implemented at the gate
level, (2) misses opportunities of using full adders or small-bit-
width adders in other situations not immediately derived from
explicit additions, and (3) removes these components from
the sight of logic synthesis, thus preventing even some basic
logic optimisations such as constant propagation. Instantiating
hardened adders before logic optimisation may easily lead to
redundant or unnecessary logic not being eliminated [6]. Ad-
ditionally, in the VTR flow, (4) the adders presented as black
boxes prevent the synthesizer ABC from correctly modelling
the critical path of the circuit. For all these reasons, we will
present in Section III a technique to discover opportunities for
hardened adders at the level of logic synthesis.

C. Using the Carry-Chain LUTs

Once the rest of the circuit is synthesised with the hardened
adders as black boxes, technology mapping rewrites the gate-
level netlist as a netlist of LUTs. The successive packing
process decides which LUTs to place in the same cluster and,
among others, if any logic can be placed in the LUTs that are
immediately in front of the hardend full adders, which we call
carry-chain LUTs for brevity. In this case, we have observed
that commercial tools do a reasonable job in efficiently filling
such LUTs; yet, the packer of VTR seldom or never makes
any other use of such LUTs than propagating one particular
input to the LUT output (that is, to the adder input). Part



of the problem relates to the highly constrained connectivity
of such carry-chain LUTs for which hardly the packer has
enough flexibility to do the right choice; again, we argue that
logic synthesis is the right time to prepare logic to fill such
LUTs. Yet, in doing that, we need to simplify our problem by
assuming that, whatever the architecture of the logic block is
in arithmetic mode, there is a possibility of using the block in a
way that there is no input constraint across independent bits of
an adder. The example of Figure 2b clarifies this point: some of
the block flexibility is relinquished by attributing inputs only
to one or the other half of it, so that each bit of the hardened
adder and all the LUTs in front of the inputs are completely
independent. With this simplification, in Section IV, we will
introduce a heuristic technique to try and make the best use
of these carry-chain LUTs: it might be not fundamentally
different from what some commercial tools appear to do, but
we are unaware of published algorithms that perform this task.

III. AUTOMATED MAPPING TO CARRY CHAINS FOR
GATE-LEVEL CIRCUITS

As mentioned, our techniques rely on logic synthesis to
improve the current state of the art. Since we use ABC [2]
as our synthesizer, we define here the AIG structure, which
is the fundamental representation of ABC. Then, we describe
our method for automated discovery of carry chains for circuits
with gate-level description.

An And-Inverter Graph (AIG) is a multilevel logic network
composed of two-input AND gates and optional inverters.
AIGs enable short runtime and high-quality results in syn-
thesis, mapping, and verification due to their simplicity and
flexibility [7], [8]. The AIG representation enables us to easily
analyse the designs, detect and form carry chains, as well as
premap logic for the carry-chain LUTs.

The intuitive way to recover full adders, which can be
mapped on a carry chain, from the gate-level description
is by searching for full adders that are connected through
the cin/cout signals. For an AIG with bit-blasted adder
logic, the proposed approach detects full-adder chains using
structural matching. To detect chains, each full adder should
exist in the AIG in terms of its structural cut-points. In other
words, inputs and outputs of each full adder should correspond
to some specific AIG nodes. We start by enumerating all three-
input cuts of all internal AND nodes in the AIG along with
their truth tables. This allows detecting full adders as pairs
of nodes having two cuts with the same three inputs and
with logic functions equal to XOR3 and Majority. The XOR3
and Majority cuts implement the sum_out and the cout
output, respectively. Next, full-adder chains are detected by
finding full adders connected to each other via carry-in/carry-
out connections. To avoid adding combinational loops, we
create a topologically ordered sequence of full-adder chains.
Then, we reconstruct the AIG by replacing full-adder chains
that are longer than some user-given size with chains of boxes.
Each chain box has three inputs and two outputs, which
represent the inputs and outputs of the corresponding full
adder, respectively. In the resulting AIG, the inputs/outputs

Fig. 3: Transformation from an AIG to an AIG with full-
adder boxes. The input AIG (left) with the matched XOR3
and Majority cuts. The full adders are replaced with boxes
and a chain of two full adders is discovered (middle). The
resulting AIG (right) in which the inputs/outputs of the chain
boxes are represented as additional primary outputs/inputs.

of the chain boxes are represented as additional primary
outputs/inputs. For verification, the resulting AIG with boxes
can be collapsed into a regular AIG, which is used to check
equivalence with the original AIG. Figure 3 shows how the
network is transformed from an AIG to an AIG with full-
adder boxes. However, restrictions exist on the structural re-
presentation of the internal logic of the full adders. In general,
the carry-chain architecture imposes no external fan-out and
no inverters along the carry-in/carry-out paths. The generated
chain boxes are guaranteed to satisfy these requirements by
considering only carry connections with a single fan-out and
by propagating negation of each cout to the inputs of the
full adder, given the fact that cout = Majority(A,B,cin) is
equivalent to cout = Majority(A,B,cin).

Additionally, to allow for an easy integration with the VTR
flow, we provide a method to output the circuit with the found
full-adder chains into a BLIF file. We explicitly instantiate
these full adders using VTR hard-adder primitive to enable
placing them on the FPGA carry chains. Similar to ODIN-
II, this heuristic only extracts the adders, but does not define
mapping for the LUTs connected to the carry chains.

Our algorithm is general because we ultimately detect
complete adders that can be mapped as required to any
hardened adder structure irrespective of its architecture. In
other words, we detect and generate adders in ripple-carry
form, but once this is done, they can be trivially transformed
to fit any destination architecture by configuring properly the
carry-chain LUTs. For example, for the architecture of Altera’s
Stratix V FPGA devices [1] shown in Figure 2a, it is enough to
configure the carry-chain LUTs to propagate the adder inputs
in a way that each logic block is literally a full adder of the
identified ripple-carry adder. On the other hand, to implement
a detected adder on the carry-lookahead structure of Xilinx’s
Virtex-7 FPGA devices [12], we should configure the carry-
chain LUTs to implement the propagate and generate signals
required for this type of hardened adder structure.
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Fig. 4: Transforming an AIG with boxes after selecting cuts
for the carry-chain LUTs. If the LUTs are 2-input with one
shared input, in the original network (left) only one cut with
inputs i0 and x2 is selected for the A1 input of the first full
adder. The remaining network (middle) is copied and has the
inputs of the selected cut, i0 and x2, as outputs. The selected
cut is implemented with one of the LUTs from the pair, while
the other is used as buffer for the signal b0 (right). The carry-
chain LUTs of the second logic block are also used as buffers.

IV. MAPPING LOGIC TO CARRY-CHAIN LUTS

In this section, we present the heuristic for premapping
logic into the carry-chain LUTs. The mapping for these LUTs
is challenging due to the input sharing constraints presented
in Section II-C. As mentioned there, we simplify these con-
straints by considering only input sharing between LUTs in the
same block; that is, we restrict the flexibility of more general
blocks, such as the one shown in Figure 2a, and use them
in a simplified configuration such as the one of Figure 2b.
This way, the mapping decision can be made for each pair
of carry-chain LUTs with shared inputs, independently from
all others. Our heuristic works for different architectures and
configurations of the LUTs, since the user should provide as
parameters the size for the carry-chain LUTs, LUTa and LUTb,
as well as the number of shared inputs between them.

The method gets as an input a circuit description in BLIF
format in which the full-adder logic of the carry chains is
defined using hard-adder primitives. Since these primitives
are represented as black boxes in the AIG, the full-adder in-
puts/outputs represent additional primary outputs/inputs. How-
ever, (1) the design might have additional modules that are also
represented with black boxes (such as multipliers and RAM
blocks), and (2) each signal appears only once in the list of
AIG outputs even if it is an input to multiple full adders.
Thus, first, we identify, out of all the AIG outputs, the ones
that are full-adder inputs. To do so, we parse the input file to
match and create pairs of AIG primary outputs, such that the
two outputs from the pair are the A and B inputs of one full
adder. Next, we compute all k-input cuts for the pairs, where
k = max(a, b), and a and b are the user-defined number of
inputs for LUTa and LUTb, respectively. For each pair, the two
cuts with the highest cumulative gain are selected per output.
The gain of a cut is the number of nodes covered by the cut
that do not need to be duplicated. Duplication may happen
because the outputs of LUTa and LUTb are only available to

the chain logic: thus, if a node x, covered by a selected cut,
has a fan-out to another node y that is not covered by the
cut, then x should be duplicated into the remaining network
together with the covered nodes from its fanin cone. For each
selected pair of cuts, cuta and cutb, we guarantee that it
can be mapped on the logic block by verifying that

nPI (cuta) + nPI (cutb)− nShared(cuta,cutb) ≤
nPI (LUTa) + nPI (LUTb)− nShared(LUTa,LUTb),

where nPI (x) presents the number of inputs of x and
nShared(x, y) the number of shared inputs of x and y. Once
the cuts are selected, we should generate a mapping for the
nodes that are not mapped on the carry-chain LUTs. Thus, a
new AIG is created, representing the remaining network that
consists of the original AIG without the nodes covered by
the selected cuts. In this AIG, the inputs of the selected cuts
become primary outputs. Then, since the new AIG differs from
the original, we can optionally optimise it. Finally, we perform
regular mapping on LUTs in normal mode. Figure 4 shows the
original network with one selected 2-input cut (left) which is
duplicated without the cut into a remaining network (middle)
for regular mapping on LUTs in normal mode, while the cut
is implemented with the logic block (right).

The method outputs a BLIF file with the new mapping of
the circuit, which consists of the selected cuts for the pairs
and the cuts selected by the regular mapping, together with
the modules from the original circuit. This BLIF file can be
used to check equivalence to the initial circuit description.

V. EXPERIMENTAL SETUP

In this section we discuss the architecture used in our
experiments as well as the modifications made to VTR in order
to implement our algorithms.

A. Architecture

The architecture used for all our experiments is based on the
FPGA architecture provided with the VTR tool and modelled
in a 40nm CMOS technology. The cluster architecture that in-
troduces carry chains to the VTR flow is a simplistic version of
the Altera Stratix V FPGA that facilitates the description of the
hard adders and the carry chain. However, such simplification
uses inefficiently the logic and, by overconstraining the inputs,
underutilises the LUTs.

Our modelled cluster consists of 10 ALMs, where each
ALM has eight inputs and two outputs. An input crossbar dis-
tributes the 52 global inputs and the 20 feedback connections
to the ALMs. To simplify the packing process, the crossbar
is fully populated (a full crossbar). The ALM can operate in
two different modes: normal and arithmetic. Usually, the ALM
is used in normal mode, and consists of a 6-input fracturable
LUT with optional registers. However, to implement arithmetic
operations, the ALM can also operate in arithmetic mode,
using the existing full adders along with its dedicated carry-
chain interconnect. The ALM’s arithmetic mode is modelled as
already explained in Section II-C and presented in Figure 2b.
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The routing parameters of the architecture are kept the same
as the ones provided with the VTR tool and used in previous
research on similar architectures [5]. The DSP blocks and
single/dual-port memory blocks are also included and placed
using intervals of eight columns of logic clusters.

B. CAD Flow

We use the VTR 7.0 CAD flow [5] with some modifications
to improve its performance on the targeted architecture. The
flow, shown in Figure 5, takes as input a Verilog description of
the circuit along with a description of the FPGA architecture
and starts by performing elaboration and logic optimisation
using ODIN-II. Then ABC [2] performs technology mapping,
providing the packer with a netlist of atoms to pack into
clusters, and then place and route them before estimating the
critical path delay and area of the circuit.

In the baseline experiments, ODIN-II infers adders from
the RTL operators used, as explained in Section II-B. ABC is
an open-source tool, designed for logic synthesis, technology
mapping, and formal verification for logic circuits. It is part
of the VTR flow, used mainly for technology mapping while
performing some logic optimisations. However, in VTR, the
provided version of ABC is old and not maintained. ABC, as
an independent tool, has come a long way since its VTR ver-
sion: it consists of new and more efficient algorithms for both
logic optimisation and mapping. Because our implemented
mapping algorithms are based on the latest version of ABC, we
modified the flow to use the same version of ABC for both the
reference experiments and ours. Furthermore, our algorithms
are implemented as additional commands in ABC, so they
were easily integrated in the flow and used right before the
technology mapping phase.

VPR, used for packing, placement, and routing, takes, as
input, the mapped netlist from ABC and the description file
of the architecture such as the one described in Section V-A.
It takes particular care of the chains and ensures that all the
adders of one chain are connected in the right order, using the

dedicated carry channels. All carry-chain related connections
and blocks are annotated in the architecture file with a special
packing pattern to help the packer identify and group these
blocks together. However, despite this special treatment, we
realised during our experiments that the packer still under-
utilises the carry-chain LUTs. Even if the opportunity of using
these LUTs exists, the packer misses it in most cases and ends
up using these LUTs as buffers.

To evaluate the efficiency of the new techniques, we use
the benchmarks from the VTR 7.0 release, which are known
to have arithmetic operation. Although our algorithms have
reasonable run times, which range from 50 milliseconds up
to 3 minutes depending on the benchmark’s size, we omit the
benchmarks that are too large to finish the complete flow in
a reasonable delay. In all experiments, we first run placement
and routing without any constraint on the channel width, and
then we augment the used channel width by 30% and repeat
the experiment. All reported results are averaged over three
runs with different placement seeds.

VI. EXPERIMENTAL RESULTS

To test each of the algorithms presented in the previous
sections, we run both the reference flow and proposed flow
on different VTR benchmarks. We present, in this section, the
results of these experiments while analysing the strengths and
shortcomings of each approach.

A. Gate-Level Arithmetic Detection

As discussed in Section II-B, ODIN-II instantiates hard
adder primitives for VTR only if the adders are visible as
high-level operators. We also verified that ODIN-II overlooks
adders for gate-level circuits by processing various gate-level
implementations of 8-, 16- and 32-bit adders, and indeed for
such gate-level structures no hard adders are instantiated.

On the other hand, with the method described in Section III
we discover 6% more full adders than ODIN-II; however, the
structure of the chains among the two versions differs. In the
chains, we can distinguish three types of nodes: First, there are
full adders for starting and ending chains, which use only the
carry and sum output, respectively—that is a particularity of
how adders are built with chains, and is common to both us and
high-level detection methods. Among the full adders which are
in the middle of chains, one can distinguish (1) true 3-input
full adders, where the two carry-chain LUTs either implement
some useful logic function or simply propagate a signal, and
(2) full adders with at least one constant input implemented
in the carry-chain LUTs. ODIN-II, by translating high-level
addition-like operands into hard adders, misses opportunities
for elementary logic optimisations (constant propagation, logic
simplification), and thus 17% of the generated full adders
have constant inputs—that is, the implemented functionality
should be simpler than that of full adder. On the contrary,
since our method works with a gate-level circuit, which is
not constrained by the adders’ logic, basic logic optimisations
can be performed on the adders, but also across the adder.
Moreover, to truly benefit from the chain logic, the composed
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Fig. 6: Number of 3-input full adders shown on logarithmic
scale when the minimum chain length is four. By recovering
full adders from the gate level description, we increase the
number of 3-input full adders by 30% on average.

TABLE I: Geomean of the different types of full adders
generated with different methods. For the gate-level circuits,
before performing the chain detection, we run three different
logic optimisations in ABC: LS1 which performs a basic logic
optimisation while generating an AIG with strash, LS2
and LS3 which are the well-known optimisation techniques
strash; dc2 or resyn; resyn2, respectively.

ODIN-II
(RTL)

ABC (gate-level)
LS1 LS2 LS3

Start/end of chains 51 60 42 36
Middle real 3-input 378 489 238 187
Middle with a constant 98 0 0 0

chains contain full adders without any constant input. Thus,
as Figure 6 shows, we generate 30% more true 3-input full
adders on average compared to ODIN-II, when the minimum
chain length for both methods is set to four. Consequently,
as Figure 7 shows, this mainly improves area (up to 15%)
for almost no change in delay on average, when the complete
VTR flow is executed.

The gate-level descriptions of the benchmarks used for
the experiments are obtained by elaborating the Verilog files
with ODIN-II while disabling the generation of hard adders.
Then, before calling the algorithm for the chain detection,
we only run the strash command from ABC to create the
AIG and perform basic logic optimisations. However, since
our algorithm is based on structural matching, to remove the
dependency of the structure generated by ODIN-II, we also
compare the number of found full adders when the circuit
is preprocessed by some heavier logic synthesis techniques.
From the results we can conclude that even if nontrivial logic
optimisation commands are run in ABC before chain detec-
tion (for instance, strash; dc2 or resyn; resyn2), a
significant fraction of the full adders that would be found on
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Fig. 7: Comparison of area and delay of the implementation
with carry chains recovered from the gate-level description
versus the one with carry chains generated by ODIN-II. By
generating carry chains composed only of 3-input full adders,
we improve the area by about 6%.

the unprocessed input netlist are still found after tangible logic
restructuring: the strength of detecting adders in the synthesis
engine is that, as shown in Table I, up to 60% of the adders
are still detected despite ABC’s heavy optimisations.

B. Mapping on the Carry Chain LUTs

Starting from the observation that the carry-chain LUTs
are underutilised, mainly as buffers, the technique presented
in Section IV increases the chances of using these LUTs to
implement logic. Considering only the 2-input and 3-input
functions selected for the carry-chain LUTs by the premapping
algorithm (i.e. excluding the inverters and buffers which, being
single-input single-out functions can, by default, be placed on
the LUTs), the new mapping technique packs twice the number
of functions on the carry-chain LUTs than the reference flow.
Theoretically, this special mapping should (1) reduce the logic
delay, since the signal would traverse one less LUT, and at
the same time (2) reduce the area, because the carry-chain
LUT implements what was previously implemented outside.
To test this approach, the reference VTR tool flow, which
identifies arithmetic operations through ODIN-II, is augmented
with the premapping selection technique. Figure 8 shows the
relative delay and area, with respect to the reference flow.
The results differ from one benchmark to another but most of
those benchmarks land in the second and fourth quadrant of the
diagram, presenting a trade off of delay and area with Pareto
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Fig. 8: Area and delay results after premapping logic in the
carry-chain LUTs, compared to the regular VTR flow.

optimal solutions. A couple of benchmarks land in the third
quadrant, improving both delay and area, even if marginally.

Although encouraging, the results remain minimalistic, far
from the intuitive improvement expected at first. A closer look
at the packed netlist helped us identify a potential reason
behind these results. Table II shows the number of cuts/LUTs
selected using the premapping phase along with the percentage
of correctly packed, out of all found carry-chain LUTs. So,
despite the identification and selection of the carry-chain LUTs
at the mapping stage, the packer fails to associate them with
their respective adders and, as such, ends up wasting the carry-
chain LUTs as buffers while placing their targeted functions in
different logic blocks. Due to this limitation of the packer only
54% of the selected cuts, on average, are correctly packed,
with a minimum of 14%. This hits on both the delay and area
results of the circuits, but no direct association can be easily
concluded.

VII. RELATED WORK

Carry-chain logic has been widely studied since early 90s
when first introduced by Hsieh et al. [4] in the Xilinx 4000
FPGAs. Carry-chain logic was introduced in the FPGA fabric
to facilitate the realisation of fast ripple-carry adders. Many
research efforts studied variations on the carry-chain architec-
ture to help in the implementation of arithmetic operators other
than adders. On the other hand, fewer researchers addressed
the problem of automatic recognition of carry-chain logic
in the RTL specification. As mentioned, tools rely on users
explicitly writing additions/subtractions using RTL primitives
(‘+’ and ‘−’ operators) or using predefined adder macro to
recognise carry-chain logic. However, when the arithmetic
operations are described at gate-level, state-of-the-art tools
often miss opportunities to use carry chains, even for circuits
rich in adder logic composed of 3-input majority functions
and 3-input XOR gates, for which using the carry chains

TABLE II: Percentage of the packed LUTs out of the ones
specially mapped to be placed in front of the hard adders.
Although more opportunities are found to map logic functions
on the adders’ LUTs, the packer often fails to associate them
with their respective adders.

Benchmark #Mapped LUTs %Packed LUTs
mcml 525 14%

LU32PEEng 512 91%
LU8PEEng 128 79%

bgm 72 74%
blob merge 22 100%

or1200 4 25%
boundtop 26 92%

sha 32 44%
Geomean 54%

could reduce both area and delay. Frederick and Somani [3]
proposed a mapping algorithm that exploits carry chains for
general circuits, proving that carry chains have the potential
to improve the delay of general-purpose circuits and not only
arithmetic circuits. However, this technique is only applicable
to carry-select chains, which are no longer present in modern
FPGAs, whereas ours detects only ripple-carry chains but can
map the resulting adders on any hardened adder structure, as
discussed in Section III.

Another aspect overlooked in carry-chain mapping is the
utilisation of the LUTs which are in front of the hardened
adders and which, at least in open source tools and published
literature, are mostly used just to pass the inputs of the carry
chain without implementing any useful logic. Luu et al. [5]
modified the VTR packer to pack cells (e.g., flip flops, LUTs)
that have transitive connectivity (i.e., connected through the
carry chain) into the same logic clusters to avoid undesirable
packing results. While they do try to fill the carry-chain LUTs,
their approach rarely finds such opportunities since due to the
position in the flow where they look for them (packing as
opposed to mapping). Our technique discussed in Section VI-B
is able to double these opportunities by searching for it at an
earlier stage. In the same paper, the authors also evaluated
the necessity to map adders on carry chains by computing an
empirical threshold of the adder width. They found that adders
with operands smaller than 12 bits are better implemented
using LUTs rather than carry chains, but this is orthogonal
to our goals and our techniques can equally well implement
detected chains in hardened adders only above some length
(in fact, by taking the decision during the synthesis process,
we could have a better ability to take a decision based on the
circuit topology rather than on a coarse heuristic, but we have
not yet pursued this venue of optimisation).

Preußer and Spallek [11] proposed an approach that uses
carry chains for general logic implementation. It uses a carry
chain node to map a (k + 1)-cut to a k-LUT. In their carry-
chain mapping algorithm, they search for cuts that cover the
LUT and the carry-chain node in the same logic block, and
this places a tighter constraint than in our approach on the
parts of the circuit which can be mapped there. The benefit of
their approach is that it naturally utilises the carry-chain LUTs.



Our approach is superior, for adder-like structures, in two
aspects; firstly, we decouple carry-chain mapping from carry-
chain LUT filling, and this relaxes the constraints and increases
the mapping possibilities. Secondly, we only map on the
hardened adders cuts that use both the sum and carry-out pins
in the carry chain to address, among others, adder structures,
whereas, due to their focus on general logic, Preußer and
Spallek miss this opportunity.

A more general technique for optimising the routing wire
utilisation of a given circuit by replacing some programmable
interconnect with nonroutable carry-chain connections was
proposed by Parandeh-Afshar et al. [10]. However, this is a
post technology mapping technique and, thus, the possibility
to form a chain is limited by the availability of mapped
logic functions that, per chance, can be re-mapped on the
chain. As a result, some opportunities for using chains will be
lost due to inappropriate partitioning of the circuit logic into
mapped logic functions. Moreover, the predefined mapping
does not allow the authors to use the second output of the chain
that is freely available. The heuristic achieves a 9% average
reduction of the routing wires but the circuit delay is increased
by 3%. Zgheib and Ouaiss [13] extended this heuristic with
Boolean matching and decomposition techniques to achieve up
to 24% reduction in routing wires. In contrast, our premapping
approach discovers additional opportunities to use complete
carry-chain logic by restructuring the gate-level description.
Furthermore, our technique achieves, in most benchmarks, a
sizable reduction in delay on top of the reduction in area (and
not only of routing resources, then).

VIII. CONCLUSION

Carry chains are a standard feature of today’s FPGAs: they
are very effective in improving speed and area of important
arithmetic components (most notably adders), to the extent that
they even contradict classic tenets of arithmetic logic design
(e.g., on an FPGA, a ripple carry adder is the fastest adder).
However, existing tools are limited to inferring carry chains
only when high-level descriptions are available. In this paper
we extract carry chains from gate-level circuits, ignoring high-
level information about the implemented arithmetic operators.
Differently from prior attempts, we chose a generic approach
that does not depend on the specificities of one implementation
of carry chains and we have tackled the problem earlier in
the flow than others did—that is, during synthesis and prior to
LUT mapping. Additionally, we have looked into a way to use
as proficiently as possible the LUTs that invariably practical
architectures have in front of carry chains.

On the carry-chain detection front, we are quite successful:
On most benchmarks we identify a decent fraction of the full-
adder structures that others identify at high-level and, arguably,
we identify those that are most relevant (that is, those which
would not be significantly improved by logically restructuring
the function). More interestingly, in a number of cases, we
identify very significantly more opportunities than available
at the high-level; this is due to XOR-based structures that are
not immediately derived from additions and subtractions, such

as cryptographic primitives or compressors. We are less able
to show the advantages of exploiting the LUTs before the
carry chains, which a tool like VTR almost completely ignores:
although our results indicate that using these LUTs is never
a bad choice in a Pareto sense (that is, none of our results is
Pareto dominated by the reference implementation), only in a
few cases our result is better in both area and timing as we
would generally expect. It appears that we are victims of a
shortcoming in the VTR packer which most often disobeys
our indications on what functionality to place in these LUTs.

It is high time to look into techniques to use hardened logic
such as carry chains at the level of logic synthesis: results
could be much better than by “dumbly” detecting plus signs
in RTL (as our results show in a number of cases) and the
techniques could be readily extended to other hardened struc-
tures (such as logic-chains that some authors have proposed in
the past). Our improved version of ABC is available to other
researchers so as to enable further research on this topic.
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