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Abstract
Logic synthesis is an important part of electronic design automation (EDA) flows, which

enable the implementation of digital systems. As the design size and complexity increase,

the data structures and algorithms for logic synthesis must adapt and improve in order to

keep pace and to maintain acceptable runtime and high-quality results. Large circuits were

often represented using binary decision diagrams (BDDs) that were rapidly adopted by logic

synthesis tools beginning in the 1980s. Nowadays, BDD-based algorithms are still enhanced,

but the possibilities for improvement are somewhat saturated after some 35 years of research.

Alternatively, the first EDA applications that exploit Boolean satisfiability (SAT) were developed

in the 1990s. Despite the worst-case exponential runtime of SAT solvers, rapid progress in

their performance enabled the creation of efficient SAT-based algorithms. Yet, logic synthesis

started using SAT solvers more diffusely only in the last decade. Therefore, thorough research

is still required both for exploiting SAT solvers and for encoding logic synthesis problems into

SAT. Our main goal in this thesis is to facilitate and promote the further integration of SAT

solvers into EDA by proposing and evaluating novel SAT-based algorithms that can be used as

building blocks in logic synthesis tools.

First, we propose a rapid algorithm for LEXSAT, which generates satisfying assignments in

lexicographic order. We show that LEXSAT can bring canonicity, which guarantees the gen-

eration of unique results, when using SAT solvers in EDA applications. Next, we present a

new SAT-based algorithm that progressively generates irredundant sums of products (SOPs),

which still play a crucial role in many logic synthesis tools. Using LEXSAT, for the first time, we

can generate canonical SAT-based SOPs that, much like BDD-based SOPs, are unique for a

given function and variable order but could relax canonicity in order to improve speed and

scalability. Unlike BDDs, due to its progressive nature, our algorithm can generate partial

SOPs for applications that can work with incomplete circuit functionality. It is noteworthy

that both LEXSAT and the SAT-based SOPs are applicable beyond logic synthesis and EDA.

Finally, we focus on resubstitution, which reimplements a given Boolean function as a new

function that depends on a set of existing functions called divisors. We propose the carv-

ing interpolation algorithm that, unlike the traditional Craig interpolation, forces the use

of a specific divisor as an input of the new function. This is particularly useful for global

circuit restructuring and for some synthesis-based engineering change order (ECO) algorithms.

Furthermore, we compare two existing SAT-based methodologies for resubstitution, which

are used for post-mapping logic optimisation. The first methodology combines SAT-based

functional dependency checking and Craig interpolation that are also used for our carving
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Abstract

interpolation; the second methodology is based on cube enumeration and is similar to the

SAT-based SOP generation.

The initial implementations of our novel SAT-based algorithms offer either better performance

or new features, or both, compared to their state-of-the-art versions. As the results indicate,

a further thorough development of SAT-based algorithms for logic synthesis, like the one

performed for BDDs in the past, can help overcome existing limitations and keep up with

growing designs and design complexity.

Keywords: electronic design automation, logic synthesis, Boolean satisfiability, SAT solvers.
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Résumé
La synthèse logique est une partie importante des flots de conception assistée par ordinateur

pour l’électronique (CAO électronique ; electronic design automation, EDA) permettant l’im-

plémentation des systèmes digitaux. L’augmentation en taille et en complexité des designs

nécessite l’adaptation des structures de données et des algorithmes utilisés dans la synthèse

logique afin de rester compétitif et de maintenir un temps d’exécution acceptable et des

résultats de haute-qualité. Les grands circuits étaient souvent représentés par des diagrammes

de décision binaire (binary decision diagrams, BDDs) qui ont été rapidement adoptés par les

outils de synthèse logique au début des années 1980. De nos jours les algorithmes basés sur les

diagrammes de décision binaire sont toujours en développement, cependant les possibilités

d’amélioration se sont quelque peu saturées après environ 35 ans de recherche.

De manière alternative, les premières applications de CAO électronique exploitant la satis-

faisabilité booléenne (Boolean satisfiability, SAT) ont été développées dans les années 1990.

Malgré le temps d’exécution exponentiel dans le pire cas des solveurs SAT, la progression

rapide de leur performance a permis de créer des algorithmes efficaces qui sont basés sur

SAT. Cependant, la synthèse logique a commencé à utiliser les solveurs SAT plus couramment

seulement dans la dernière décennie. C’est pourquoi il est nécessaire d’approfondir encore la

recherche pour trouver des meilleures façons d’exploiter des solveurs SAT ainsi que d’encoder

des problèmes de synthèse logique en SAT. Notre but principal dans cette thèse est de faciliter

et de promouvoir l’intégration en cours des solveurs SAT dans la CAO électronique en propo-

sant et en évaluant des algorithmes novateurs basés sur SAT qui peuvent être utilisés en tant

que blocs de construction dans les outils de synthèse logique.

En premier, nous proposons un algorithme rapide pour LEXSAT qui génère des affectations

satisfaisantes en ordre lexicographique. Nous montrons que LEXSAT peut apporter de la cano-

nicité, garantie de génération de résultats uniques, lorsqu’on utilise des solveurs SAT dans les

applications de CAO électronique. Ensuite, nous présentons un nouvel algorithme basé sur

SAT générant de façon progressive des sommes de produits (sums of products, SOP) non redon-

dants qui jouent toujours un rôle crucial dans nombres d’algorithmes de synthèse logique.

Avec LEXSAT, nous pouvons pour la première fois générer des SOPs canoniques basées sur

SAT qui, tout comme les SOPs basées sur des diagrammes de décision binaire, sont uniques

pour une fonction et un ordonnancement des variables, mais peuvent assouplir la canonicité

afin d’améliorer la vitesse et la scalabilité. Contrairement aux diagrammes de décision binaire,

notre algorithme peut, de par sa nature progressive, aussi générer les SOPs partiels pour

des applications qui peuvent travailler avec la fonctionnalité incomplète d’un circuit. Il est

iii



Résumé

remarquable que LEXAT et les SOPs basées sur SAT sont applicables au-delà de la synthèse

logique et de la CAO électronique. Finalement, nous nous concentrons sur la resubstitution,

qui ré-implémente une fonction booléenne donnée comme une nouvelle fonction dépendant

sur un ensemble de fonctions existantes, appelées diviseurs. Nous proposons l’algorithme

d’interpolation à ciselage (carving interpolation) qui, contrairement à l’interpolation tradition-

nelle de Craig, impose l’utilisation d’un diviseur spécifique en tant qu’entrée de la nouvelle

fonction. Ceci est particulièrement utile pour la restructuration globale de circuit ainsi que

pour quelques algorithmes d’engineering change order (ECO) basés sur la synthèse logique.

De plus, nous comparons deux méthodologies existantes pour la resubstitution basés sur SAT,

utilisées pour l’optimisation logique après le technology mapping. La première méthodologie

combine la vérification de dépendances fonctionnelles basées sur SAT et l’interpolation de

Craig, également utilisées dans notre interpolation à ciselage ; la deuxième méthodologie est

basée sur l’énumération de cubes et est similaire à la génération de SOPs basée sur SAT.

Les implémentations initiales de nos algorithmes novateurs basés sur SAT offrent soit de

meilleures performances soit de nouvelles fonctionnalités, ou toutes les deux, en compa-

raison à leurs versions de pointe. Comme les résultats l’indiquent, un développement plus

approfondi des algorithmes basés sur SAT pour la synthèse logique, comme celui effectué

pour les diagrammes de décision binaire dans le passé, peut aider à surmonter les limitations

existantes et à rester en phase avec la croissance et la complexité des designs.

Mots clefs : conception assisté par ordinateur pour l’électronique, synthèse logique, satisfaisa-

bilité booléenne, solveurs SAT.
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Резиме
Логичката синтеза (logic synthesis) е значаен дел од системите за автоматизаци-
jа на електронски дизаjн (electronic design automation, EDA), кои овозможуваат
изработка на дигитални системи. Какошто големината и комплексностa на ди-
заjните расте, структурите на податоци и алгоритмите за логичка синтеза мора
да се прилагодуваат и усовршуваат за да останат конкурентни и за да одржат
прифатливо време на извршување и резултати со висок квалитет. Големите ди-
гитални кола беа често прикажувани со бинарни диjаграми за одлука (binary
decision diagrams, BDDs) кои беа брзо прифатени од алатките за логичка синте-
за почнуваjќи од 1980-тите години. Денес, BDD-базираните алгоритми сè уште
се унапредуваат, но можностите за подобрување се донекаде заситени после
околу 35 години истражување.
Алтернативно, првите EDA апликации кои користат Булова задоволителност
(Boolean satisfiability, SAT ) беа развиени во 1990-тите години. И покраj експо-
ненциjалното наjлошо време на извршување на SAT решавачите (SAT solvers),
брзиот напредок во нивните перформанси овозможи создавање на ефикасни
SAT -базираниалгоритми.Сепак, SATрешавачитепочналеда секористатпорас-
пространето во логичката синтеза дури во последната децениjа. Поради тоа, сè
уште има потреба од темелно истражување за искористување на SAT решава-
чите, како и за претставување на проблемите од логичка синтеза како SAT про-
блеми. Нашата главна цел во оваа дисертациjа е да jа олесниме и промовираме
понатамошната интеграциjа на SAT решавачите во EDA, со тоа што предлага-
ме и евалуираме нови SAT -базирани алгоритми кои може да се користат како
основни елементи во алатките за логичка синтеза.
Прво, ние предложуваме брз алгоритам за LEXSAT, коj генерира задоволувач-
кивредности (satisfying assignments) полексикографскиредослед.Покажуваме
дека LEXSAT може да овозможиканоничност (canonicity), коja гарантира созда-
вање на уникатни резултати, при користење на SAT решавачи во EDA аплика-
ции. Следно, претставуваме нов SAT -базиран алгоритам коj постепено генери-
ра сума од производи (sum of products, SOP) без редундантност, кои сè уште има-
атклучна улога вомногу алаткизалогичка синтеза. СокористењенаLEXSAT, за
прв пат, можеме да генерираме канонски SAT -базирани SOP-а кои, слично на
BDD-базираните SOP-а, се единствени за дадена функциjа и редослед на про-
менливите, но со можност да се релаксира каноничноста за да се подобри бр-
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зинатаиприспособливостa. ЗаразликаодBDD-ата, порадипостепенатаприро-
да, нашиот алгоритам може да генерира парциjални SOP-а за апликации кои
можат да работат со нецелосна функционалност на колата. Значаjно е што и
LEXSAT и SAT -базираните SOP-а се применливи пошироко од логичката синте-
за и EDA. На краj, се фокусираме на ресупституциjа (resubstitution), коjа реим-
плементира даденa Булова функциjа како нова функциjа коjа зависи од мно-
жество од постоечки функции наречен делители. Ние го предложуваме алго-
ритамот за интерполациjа со отсекување (carving interpolation) коjа за разлика
од традиционалната Крегова интерполациjа (Craig interpolation) jа принудува
употребата на одреден делител како влез на новата функциjа. Ова е особено
корисно за глобалнo реструктуирање на кола и за некои алгоритми базирани
на engineering change order (ECO) алгоритми. Покраj тоа, споредуваме две по-
стоечки SAT -базирани методологии за ресупституциjа кои се користат при ло-
гичка оптимизациjа после технолошкомапирање (technologymapping ). Првaта
методологиjа соединува SAT -базирана проверка за функционална зависност и
Креговаинтерполациjа коиисто така се употребуваат занашатаинтерполациjа
со отсекување; втората методологиjа се базира на наброjување на коцки (cube
enumeration) и е слична со создавањето на SAT-базирани SOP-а.
Првобитните имплементации на нашите нови SAT -базирани алгоритми нудат
или подобри перформанси или нови функции или и двете, во споредба со нив-
ните современи верзии. Како што резултатите укажуваат, понатамошен теме-
лен развоj на SAT -базиранте алгоритми за логичка синтеза, како оноj коj беше
извршен за BDD-ата во минатото, може да помогне да се надминат постоечки-
те ограничувања и да се остане во чекор со растот на дизаjните и нивната ком-
плексност.

Клучни зборови: автоматизациjа на електронски дизаjн, логичка синтеза, Бу-
лова задоволителност, SAT решавачи.
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1 Satisfiability Solvers for
Electronic Design Automation

The design complexity
is growing, EDA
should keep up the
pace

Electronic design automation (EDA) tools ease the implementation of

digital systems by providing an automated process for translating a

high-level description of a design into its final chip implementation.

Research and development in EDA began in the 1960s, soon after the

development of the integrated circuit [Wang et al., 2009]. Later, an

extensive academic research was initiated and accelerated the advance-

ment. As a consequence, the EDA tools have followed the continuous

growth in design size and can implement digital systems with more

than a billion transistors. This growth in design size and complexity is

mainly attributable to advancements in hardware. The revised Moore’s

law predicts that transistor density doubles approximately every two

years [Moore, 1975]. Despite the fear that this rate of growth might

be impossible to maintain any further, the prediction has remained

largely accurate. Many experts, including Moore himself [Courtland,

2015], are convinced that this can be continued at least through the

following decade. Moreover, more complex technologies such as field-

programmable gate arrays (FPGAs) and 3D integrated circuits are in-

creasingly prevalent in the market. Today, we have a commercially

available single-chip processor with about 7.2 billion transistors [Al-

corn, 2016] and an FPGA with about 30 billion transistors implementing

5.5 million logic elements [Altera, 2016; Rubenstein, 2016]. In order to

use them efficiently, EDA tools have to be upgraded with scalable tech-

niques to keep up with the size and complexity of modern designs, while

maintaining the tools’ performance and ideally achieving an improved

quality of the final design implementations. This would enable the EDA

tools to further accomplish their goal of producing high-quality complex

1
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Figure 1.1 – Evolution of the best SAT solvers from 2002 to 2011. The performance of the given solvers is
compared using benchmarks from the SAT 2009 competition. For each solver, the cumulative number
of solved problems (x-axis) within a specific amount of time (y-axis) is given [Järvisalo et al., 2012].

circuits without design defects in relatively short design time, which al-

lows meeting time-to-market and cost requirements [De Micheli, 1994].

The performance of
SAT solvers is
continuously

improving

On a different note, the Boolean satisfiability (SAT) problem, which

determines if there exist a variable assignment for which a given propo-

sitional formula evaluates to true, received great attention from both a

theoretical and a practical point of view. Theoretically, it is unlikely to

find an algorithm for solving the SAT problem with a polynomial worst-

case time complexity as it is an NP-complete problem [Cook, 1971].

Although the NP-completeness currently leaves us with only determin-

istic algorithms with worst-case exponential runtime, in practice many

modern SAT algorithms, which are implemented in SAT solvers, can

solve complex instances of real world problems in a reasonable time.

We have witnessed a tremendous improvement of the performance of

state-of-the-art SAT solvers in the last two decades—SAT problems that

could not have been solved in more than an hour are now solvable in
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less than a second [Marques-Silva, 2007]. For example, Figure 1.1 shows

the evolution of the best solvers from 2002 to 2011 [Järvisalo et al., 2012].

This continuous advancement of SAT solvers can be tracked through

the SAT competitions that have started in 1992 and have been organ-

ised annually since 2002 [Balyo et al., 2017; Järvisalo et al., 2012]. Their

main goal is to stimulate the innovation and development of techniques

for SAT solving. Considering the success of and interest in these com-

petitions, it is expected that this trend of improving SAT solvers will

continue in the coming years. Another reason for improving SAT solvers

is that SAT has already a wide variety of practical applications across a

number of domains [Gu et al., 1996; Marques-Silva, 2008], such as artifi-

cial intelligence, bioinformatics, software verification, and automated

theorem proving, as well as EDA [Claessen et al., 2009; Marques-Silva

and Sakallah, 2000].

In the following sections of this chapter, we first present a short his-

tory on the evolution of the algorithms for logic synthesis, which is

the research subject of this thesis. Next, we provide algorithms from

logic synthesis and other EDA stages as examples that already use SAT

solvers as the core machinery. Then, we discuss the main challenges

of exploiting SAT solvers in logic synthesis. Finally, we summarise our

contributions and present the thesis organisation.

1.1 From Truth Tables to SAT Solvers: The

Evolution of Logic Synthesis Algorithms

The vital role of logic
synthesis as part of
EDA flows

EDA flows differ depending on the target technology for implementing

the given design. For example, Figure 1.2 shows side-by-side the typ-

ical stages of the EDA flows for application specific integrated circuits

(ASICs) [Smith, 1997] and FPGAs [Betz et al., 1999]. Regardless of the

target technology, logic synthesis is part of any EDA flow and has a vital

role because its operation has a major impact on the performance of

the final implementation. It receives as input a gate-level netlist that

is composed of basic Boolean logic gates, such as AND, OR, and XOR

gates, and inverters. Its main goal is to convert the received netlist into

a high-quality mapped netlist of technology blocks without modifying

the functionality. This is achieved with the two main steps of logic

synthesis. First, it performs technology-independent logic optimisation

of the gate-level description: it reduces the area and delay [Brayton

3
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(b) FPGA design flow.

Figure 1.2 – Design flows for ASICs and FPGAs. Although some of the stages are different, logic synthesis
is always required. It receives a gate-level netlist from the high-level synthesis stage and outputs a
netlist of technology blocks for the floorplanning or packing stage for ASICs and FPGAs, respectively.

et al., 1990]. For a gate-level netlist, its area represents the size of the

netlist in terms of number of logic gates used to implement it, and its

delay represents the number of logic levels on the critical path. Once

an implementation with a good gate-level area and delay is produced,

technology mapping algorithms transform the gate-level netlist into

a netlist of larger logic blocks whose structure depends on the target

technology [De Micheli, 1991]. For example, for ASICs, the logic gates

are mapped into a netlist of ASIC blocks that usually represent stan-

dard cells, which are predesigned logic components that implement a

Boolean logic function or a memory element. Whereas, for FPGAs, it

creates a netlist of look-up tables (LUTs) [Cong and Ding, 1994] or LUT

structures [Ray et al., 2012]. As with logic optimisation, the objective is

to generate a circuit implementation with a minimal area or a minimal

delay by considering the area and delay of the used technology blocks.

Figure 1.3 shows the netlist of a 2-bit adder before and after logic op-

timisation, and after technology mapping. But, this small circuit is an

easy target for logic synthesis, and it can even be easily processed by

hand. Modern logic synthesis methods work with large circuits whose

size varies from a few thousand to several million gates.

The evolution of logic synthesis is triggered mainly by the growth in the

design size. The main role in this evolution belongs to the data struc-

tures for representing digital circuits along with the tools and algorithms

4
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(c) The netlist after technology mapping.

Figure 1.3 – The logic synthesis process for a 2-bit adder. The initial gate-level netlist, which is com-
prised of 18 AND gates and has 5 levels, is shown on Figure 1.3a. Each internal (oval) node represents an
AND gate and gives its ID number. Figure 1.3b shows the netlist after an algorithm for logic optimisation
is run. Both area and delay are optimised, so the new netlist has only 11 AND gates and 4 levels. Finally,
Figure 1.3c presents the network after technology mapping into 3-input LUTs. Each internal node
represents a LUT and gives its ID number and SOP representation.

for their processing. The data structures that are used in this thesis are

described in more detail in Section 2.2.

Once upon a time,
minterm-based
representations and
algorithms were
introduced

In order to produce an optimal two-level circuit implementation, logic

synthesis started by proposing optimisation algorithms that use rep-

resentations such as truth tables [Karnaugh, 1953; McCluskey, 1956;

Quine, 1952; Veitch, 1952] and sums of products (SOPs) [Brayton et

al., 1984]. Some algorithms operating with these representations are

still used as building blocks of more complicated logic synthesis ap-

plications. For example, in technology mapping, the state-of-the-art
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algorithms for negation-permutation-negation (NPN) classification use

truth tables for classifying and matching functions [Huang et al., 2013;

Petkovska et al., 2016a]. But in general, truth tables are impractical

for functions with more than 16 inputs, whereas SOPs are inefficient

for some practical circuits that are rich with XOR logic and for which

the size of the minimal two-level representation is exponential in the

number of primary inputs.

Transition to the more
scalable DAG-based
representations and

algorithms

Due to these limitations, the attention was redirected to algorithms

for multi-level logic optimisation [Brayton et al., 1987; Gregory et al.,

1986] in which the circuits are represented as a directed acyclic graph

(DAG) of logic gates. For example, ABC [ABC], which is a widely-used

academic open-source software system for logic synthesis and formal

verification, heavily relies on and-inverter graphs (AIGs) [Hellerman,

1963; Kuehlmann et al., 2002], but a rising interest exists also for the

more recent majority-inverter graphs (MIGs) [Amarù et al., 2014a]. At

the same time when the first multi-level logic optimisation algorithms

appeared, algorithms that use binary decision diagrams (BDDs) started

to emerge [Bryant, 1986; Coudert et al., 1993a]. The use of BDDs spread

fast because their canonicity enables an efficient processing of two

Boolean expressions once the BDDs are constructed. However, for

some practical functions, such as multipliers, the BDD construction

suffers from the BDD memory explosion problem—the BDD size has

an exponential lower bound in the number of input variables—hence,

using BDDs is often impractical [Bryant, 1991].

SAT solvers as a
promising way to

overcome the current
limits of logic

synthesis

In contrast, SAT solvers can be initialised in linear time to the circuit size

and can immediately start solving the given problem. By not using a

canonical representation, algorithms using SAT can avoid the exponen-

tial space blow-up of BDDs. Hence, the SAT-based algorithms are more

scalable and offer better runtime and memory consumption in many

cases. In the following section, we discuss the introduction and role

of SAT solvers in logic synthesis in more detail. We also demonstrate

that SAT solving has already been shown to be (1) a good option for im-

plementing traditional logic synthesis algorithms, and (2) appropriate

as an alternative or a replacement for BDDs. Moreover, by using the

existing SAT-based algorithms, new applications can be easily built.

Example 1.1.1. Soeken et al. [2016] proposed a SAT-based algorithm

for computing a dependency matrix that combines SAT-based algo-

rithms from combinational equivalence checking [Mishchenko et al.,

6
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2006b] and automatic test pattern generation [Larrabee, 1990], with

some SAT-solver features such as incremental solving. Their algorithm

also outperformed the BDD-based algorithm from ABC [ABC] for 13

out of 14 benchmarks—the BDD-based implementation did not solve

4 benchmarks due to a time limit and 5 benchmarks due to a memory

limit, for 4 it has a higher runtime, and it is faster for only one bench-

mark that has a simple structure.

Exploring and analysing further which algorithms and features of SAT

solvers are suitable specifically for logic synthesis and other EDA stages,

as well as proposing new ways to implement and use SAT solvers, would

ease the development of SAT-based logic synthesis applications and

would enable problems, which were intractable before, to be solved.

Logic synthesis for
combinational and
sequential circuits

The algorithms for logic synthesis also differ depending on whether

they optimise the combinational logic of the circuit or the sequential

one. In this thesis, the proposed algorithms work only with combi-

national logic, whereas sequential circuits are handled by assuming

all inputs and outputs of the sequential logic as primary outputs and

inputs, respectively.

1.2 SAT Solving in EDA Applications

EDA algorithms based
on SAT solvers are
proposed for every
part of the tool flow

SAT solvers have been deployed in almost all stages of EDA flows. Shift-

ing towards SAT solving is encouraging because the improvement of

the performance of state-of-the-art SAT solvers brings immediate bene-

fit to the applications that use them. Furthermore, beside the regular

improvement in SAT solvers, SAT algorithms have been proposed specif-

ically for solving EDA problems and have been tuned to target distinct

properties and structures of the digital circuits [Aloul et al., 2006; Gold-

berg and Novikov, 2002; Marques-Silva and Sakallah, 1999; Oh et al.,

2004]. The interest in applying SAT to EDA began in the 1990s when SAT

solvers were introduced in algorithms for routing in FPGAs [Nam et al.,

1999; Wood and Rutenbar, 1998], placement [Devadas, 1989], timing

analysis [Silva et al., 1998], fault diagnosis and logic debugging [Chen

and Gupta, 1996; Smith et al., 2005], but also for logic synthesis and

verification, as described next. The success of these initial algorithms

showed the potential of SAT solvers in these stages of EDA, and the
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Figure 1.4 – Comparison of SAT and BDDs for functional verification. The benchmarks are Boolean for-
mulas for verifying 100 buggy versions of a VLIW microprocessor. The used SAT solver Chaff [Moskewicz
et al., 2001] evaluates only one correctness criterion. BDDs evaluate 16 easier criteria in parallel, and
as soon as one of them finishes, the rest are terminated and the verification time of the one that
finished is reported. The benchmarks are sorted in ascending order of their times for the BDD-based
experiment [Velev and Bryant, 2003].

research in these areas is still active [Fraisse et al., 2016; Fujita and

Mishchenko, 2014; Nadel and Ryvchin, 2016].

SAT as an alternative
to BDDs: the success
story from verification

The biggest motivation for developing SAT-based logic synthesis algo-

rithms came from their success in formal verification [Velev and Bryant,

2003], especially in automatic test pattern generation [Fujita et al., 2015;

Larrabee, 1990; Stephan et al., 1996], equivalence checking [Goldberg

et al., 2001; Mishchenko et al., 2006b], and model checking [Biere et al.,

1999; McMillan, 2003]. All these algorithms work also with Boolean

logic, and are thus similar to logic synthesis. These applications proved

that SAT-based methods can easily outperform existing BDD-based

8
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methods, hence SAT solvers and algorithms using them became crucial

components of most verification tools [Claessen et al., 2009].

Example 1.2.1. Velev et al. [2003] compared the runtime of procedures

based on SAT solvers and BDDs by evaluating benchmarks that rep-

resent Boolean formulas for formal verification of correct and buggy

versions of a very long instruction word (VLIW) microprocessor. In this

case, first, they proved that the SAT solver Chaff [Moskewicz et al., 2001]

has the best performance among other SAT solvers at that time. Next,

they compared Chaff to a fast BDD-based method [Velev, 2000]. As

Figure 1.4 shows, the difference between BDDs and Chaff is up to four

orders of magnitude when verifying the buggy designs. When verifying

correct designs, Chaff required 1.6 seconds, whereas the BDD-based

method required 31.5 hours (about five orders of magnitude).

The wide and active
use of SAT solvers in
logic synthesis

This success in formal verification triggered a similar trend in logic syn-

thesis. For example, more scalable SAT-based versions were proposed

for the BDD-based algorithms for functional dependency [Jiang et al.,

2010; Lee et al., 2007], functional decomposition [Lee et al., 2008; Lin

et al., 2008], logic don’t-care-based optimisation [Mishchenko and Bray-

ton, 2005], and dependency matrix computation [Soeken et al., 2016c].

The algorithms based on SAT solvers are more scalable because they

can process problems for which the size of BDDs is exponential, and

they are faster when solving large and hard problems. However, the in-

tegration of SAT is not limited to replacing BDDs. SAT is shown efficient

also for many other logic synthesis applications, including Boolean

matching [Safarpour et al., 2006; Soeken et al., 2016a], technology map-

ping [Ling et al., 2005], and combinational delay optimisation [Soeken

et al., 2017]. Due to the wide use of SAT in logic synthesis, but also in

other stages of the EDA flow, SAT solvers became a standard part of

the EDA tools, similarly to how BDD packages were integrated in the

past. This facilitates the development and inclusion of new SAT-based

algorithms in the flow.

1.3 Challenges of Exploiting SAT Solvers

Despite the wide use of SAT solvers in EDA and other applications, there

are still many challenges that have to be addressed in order to facilitate

and enable efficient implementation of some specific applications. In
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this chapter, we present challenges that are among the most important

for logic synthesis, and we therefore tackle most of them in this thesis.

Excessive runtime for
hard problems, and

unpredictable runtime
in general

Although modern SAT solvers can often solve hard structured problems

with over a million variables and several million constraints [Gomes

et al., 2008], there are still some hard problems that cannot be solved

within several hours of computing time. The required time for SAT

solving depends mostly on the size and complexity of the problem, but

other factors can also affect the ability to find a solution for a given

problem. First, there are different encoding techniques that determine

the translation into a propositional representation given as input to

the SAT solver. Choosing an appropriate encoding is important as the

quality of encoding often determines whether the problem is solvable or

not [Björk, 2009]. Second, the SAT competitions have different competi-

tion tracks in order to accommodate different types of SAT solvers [Balyo

et al., 2017]. Thus, although some SAT solvers might be unsuitable for

solving some particular problems, others can demonstrate an excep-

tional runtime. An additional challenge is that it is impossible to predict

the runtime and final result of a single call of the SAT-solving procedure.

In this aspect SAT solvers are similar to BDDs, for which the termination

time and the quality of results are unknown until the complete BDD is

build. However, in this thesis, we show that in some cases SAT-based

algorithms can be more scalable than their BDD-based versions. This

scalability is achieved by structuring the algorithms to solve the problem

gradually by issuing multiple easier calls of the SAT-solving procedure.

The gradual problem solving also enables estimating the progress of the

solving and the total required runtime.

Non-existent control
over the returned

satisfying assignment
and proofs of
unsatisfiability

For a given problem, SAT solvers return a canonical answer in terms of

whether the problem is satisfiable or unsatisfiable (UNSAT). However,

the previously mentioned factors also affect the choice and quality of

the received proof for the final evaluation, which is either a satisfying as-

signment or a proof of unsatisfiability, respectively. For example, when

the problem is satisfiable, the choice of the satisfying assignment re-

turned by the SAT solver depends on the encoding of the problem, the

implementation of the SAT solver, and the underlying operating system.

Moreover, in logic synthesis, the runtime and results are affected by

the initial implementation of the circuit from which the SAT problem is

derived. Thus, SAT solvers are often considered as non-canonical. This

makes them unsuitable for applications requiring canonicity; hence,
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SAT
solvers

LEXSAT
(Chapter 3)

Carving 
Interpolation
(Chapter 5)

Methods for
resubstitution

(Chapter 6)

SAT-based SOPs
(Chapter 4)

Figure 1.5 – Connection of the main contributions of the thesis. All algorithms are based on SAT solving.
The LEXSAT algorithm is used for the SAT-based SOP generation to generate canonical SOPs. The
methods used for resubstitution include, as first option, a method that is based on cube enumeration,
similar to the one for SAT-based SOPs generation, and as second option, methods that are used as part
of the carving interpolation algorithm. The last line of each box gives the chapter number that covers
the corresponding topic.

such applications usually rely on canonical BDDs that also face scalabil-

ity issues for some particular problems despite being the most scalable

canonical representation. Similarly, even when canonicity is not re-

quired, different satisfying assignments and proofs of unsatisfiability

can lead to results with different qualities in the applications that use

them. In this thesis, we demonstrate that it is possible to achieve canon-

icity in SAT-based applications that utilise the returned satisfying as-

signments. We also propose a fast algorithm for this purpose. Moreover,

despite having no control over the returned proofs of unsatisfiability,

we obtain results with the wanted properties by calling the SAT-solving

procedure multiple times with specific values for some inputs.

1.4 Thesis Contribution and Organisation

Facilitate the
development of
SAT-based logic
synthesis applications

With this thesis, we facilitate the development of logic synthesis applica-

tions that use SAT solvers as a main engine of computation. We extend

the set of available SAT-based methods with three novel approaches.

Each method is an algorithm that functions as a key building block in

different logic synthesis applications. Some proposed methods are not

even restricted to logic synthesis and can be used as building blocks for

other applications. Finally, we compare two SAT-based methodologies

that are used for the resubstitution of a given function. Figure 1.5 illus-

trates the connection between the proposed methods and the compari-
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son. Next, we give the outline of the thesis, as well as a short description

of the chapters containing the main contributions.

First, Chapter 2 comprises the background information to support the

following chapters.

Fast generation of
satisfying assignments
in lexicographic order

Chapter 3 introduces a new fast algorithm [Petkovska et al., 2016b] for

the lexicographic Boolean satisfiability problem, called LEXSAT, when

the satisfying assignments are generated in a lexicographic order. Given

a variable order, LEXSAT finds a satisfying assignment whose integer

value under the given variable order is minimum (or maximum) among

all satisfying assignments. If the formula has no satisfying assignments,

LEXSAT proves it unsatisfiable, as does traditional SAT. We also pro-

pose methods that use the lexicographic properties of the assignments

to further improve the runtime when generating consecutive satisfy-

ing assignments in lexicographic order. Finally, we promote the use

of LEXSAT in a wide range of EDA applications, especially because it

enables canonicity in SAT-based algorithms.

Progressive generation
of canonical

irredundant SOPs

Next, Chapter 4 proposes an algorithm [Petkovska et al., 2017] that pro-

gressively generates canonical irredundant SOPs for completely and

incompletely specified Boolean functions by using a SAT solver. For the

first time, we can generate canonical SOPs using a SAT solver, which

is enabled by the LEXSAT algorithm described in Chapter 3. Canonic-

ity is a key component in applications, such as constraint solving and

random assignment generation, which traditionally rely on methods

based on BDDs. However, in contrast with BDDs, our algorithm can

relax canonicity when it is not required in order to improve speed and

scalability. Moreover, unlike the BDD-based methods for SOP gener-

ation, our progressive generation enables real time monitoring and

early termination, as well as generation of partial SOPs for incremental

applications.

Forcing the use of
base functions during

interpolation

Chapter 5 provides a new method [Petkovska et al., 2014] that can be

particularly useful when rewriting circuits in some synthesis-based

algorithms for which a dependency function h should be generated. The

function h reimplements a given target function f as f = h(G), where G

represents a given set of base functions. The problem with the existing

Craig interpolation, which can also provide the dependency function, is

that it selects random base functions and, in particularly, omits some

base functions potentially required for an optimal implementation of
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the target function. Therefore, we propose a method, called carving

interpolation, that forces a specific base function as a primary input

of the dependency function by building the dependency function as

a Shannon expansion of two constrained Craig interpolants. We also

introduce an efficient method that iteratively imposes a predefined set

of base functions.

Comparison of
methods for
resubstitution

Chapter 6 compares side-by-side two SAT-based methodologies for re-

substitution, which replaces a function of a given target node using a

resubstitution function that has other nodes as inputs, called divisors.

Both methodologies were proposed as a substantial part of different

algorithms for post-mapping optimisation and resynthesis, but they

have never been compared to each other. Each methodology includes

algorithms that can minimise the set of divisors while ensuring that

the target node can be reimplemented with the minimised set, and can

generate the resubstitution function. The first methodology combines

methods that are also part of the carving interpolation presented in

Chapter 5. First, it creates a minimal set of divisors by using a circuit

structure similar to the one for obtaining an interpolant; it then gener-

ates a resubstitution function by using Craig interpolation. The second

methodology is based on cube enumeration and is similar to the SAT-

based SOP generation from Chapter 4. Its strength is that it directly

provides the resubstitution function at the end of the minimisation.

Lastly, we conclude that a hybrid approach that combines algorithms

from the two methodologies represents an optimal solution for some

applications.

Finally, Chapter 7 concludes the thesis and provides ideas for future

research that can build upon and extend the presented work.
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2 Background Information

In this chapter, we provide background information on the basic terms

and concepts that are used in the thesis. First, we introduce Boolean

functions and their most commonly used representations. Then, we de-

fine satisfiability solving and describe the features available in modern

SAT solvers that play a crucial role in the algorithms proposed in this

thesis. Finally, we define the terminology associated with functional

dependency, Craig interpolation and Shannon expansion, which are

required for Chapter 5 and Chapter 6.

2.1 Boolean Function

Boolean functionFor a variable v , a positive literal represents the variable v , whereas

the negative literal represents its negation v̄ . A cube, or a product, c,

is a Boolean product (AND, ·) of literals, c = l1 · · · · · lk . If a variable is

not represented by a negative or a positive literal in a cube, then it is

represented by a don’t-care (−), meaning that it can take both values 0

and 1. A cube with i don’t-cares, covers 2i minterms. A minterm is the

smallest cube in which every variable is represented by either a negative

or a positive literal.

Example 2.1.1. Consider the set of variables X = (x1, x2, x3). A cube

−x2x̄3, which can be simply written as x2x̄3, covers the two minterms

x̄1x2x̄3 and x1x2x̄3 because the variable x1 is represented by a don’t-

care.

AssignmentEach minterm is associated with a given input assignment. An assign-

ment to a finite set of Boolean variables, X = (x1, . . . , xk ), is the mapping
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X → {0,1}k . In the minterm, a variable is represented with the positive

or negative literal if it assumes a value of 1 or 0, respectively.

Example 2.1.2. Consider the set of variables X = (x1, x2, x3). An as-

signment 010 denotes that x1 = 0, x2 = 1, and x3 = 0. The minterm

associated with this assignment is x̄1x2x̄3.

Incompletely specified
Boolean function and

support sets

Let f (X ) : B n → {0,1,−}, B ∈ {0,1}, be an incompletely specified Boolean

function of n variables X = {x1, . . . , xn}. The support set of f is the subset

of variables that determine the output value of the function f . The

on-set of f is defined by the set of minterms for which f evaluates to

1. Similarly, the off-set and the don’t-care-set of f are defined by the

minterms for which f evaluates to 0 and don’t-care, respectively. In a

multi-output function F = { f1, . . . fm}, each output fi , 1 ≤ i ≤ m, has its

own support set, on-set, off-set and don’t-care-set associated with it.

Completely specified
Boolean function

Similarly, f (X ) : B n → {0,1}, B ∈ {0,1} is a completely specified Boolean

function of n variables X = {x1, . . . , xn}. For completely specified func-

tions, the minterms belong either to the on-set or to the off-set of f .

Example 2.1.3. Consider the function f (x1, x2, x3) = (x1+x2)x̄3. For the

assignment 010, the function f (x1, x2, x3) evaluates to 1. Thus, its corre-

sponding minterm x̄1x2x̄3 belongs to the on-set of f . On the contrary,

the minterm x̄1x̄2x3 belongs to the off-set of f , because the function

evaluates to 0 for the corresponding assignment 001.

Primary inputs and
outputs

In a multi-output Boolean function F = { f1, . . . fm} defined over a set

of input variables X = {x1, . . . , xn}, the input variables xi , 1 ≤ i ≤ n, are

called primary inputs (PIs), and the variables of the outputs f j , 1 ≤ j ≤
m, represent the primary outputs (POs). The PIs and POs represent the

external connections of the network.

2.2 Representation of Boolean Functions

In this section, we define four possibilities for representing Boolean

functions that are used in the following chapters of this thesis. First, we

introduce the minterm-based representations truth tables and sums

of products. Then, we introduce two representations based on di-

rected acyclic graphs (DAGs): binary decision diagrams and and-inverter

graphs. Figure 2.1 illustrates the different representations through the

sum and carry function of a full adder.
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ci a b co s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a) A truth table.

co s
-11 001
1-1 010
11- 100

111

(b) An SOP.

1 0

co s

aa

b b b b

ci ci

(c) A BDD.

a b ci
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6 7

8

9

10

11
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(d) An AIG.

Figure 2.1 – Representation of the Boolean functions of a full adder. The carry output is represented
with the function co = ab+ci (a⊕b), and the sum output is represented with the function s = a⊕b⊕ci .

CanonicitySome representations of Boolean functions are canonical. A canonical

representation is a unique representation for a function under certain

conditions. For example, the BDD structure of a Boolean function

depends only on the input variable order and is independent of the

original representation of the function. Canonicity is an important

feature for some applications, such as functional equivalence checking.

2.2.1 Truth Tables

Truth tablesA single-output Boolean function f with n inputs can be represented

with its truth table, which is a string composed of 2n bits. The i -th bit of

the truth table gives the output value of the function f when its inputs
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are assigned to the minterm defined with the binary digits of the n-bit

binary number i . For example, the bit in position 0 gives the value of the

function when all PIs are assigned to 0. The bitstring representing the

truth table can be observed as the binary expansion of a non-negative

number t f ∈ [0,2n). For example, the truth table of any 5-input function

can be encoded with a 32-bit integer. As shown on Figure 2.1a, 8 bits

are required to represent the truth table of each full-adder output that

has 3 inputs.

Example 2.2.1. The truth table of the two-input function f (x1, x2) = x1 ·
x2 is 0001 and t f = 7. The three-input function g (x1, x2, x3) = x1 ·x2 + x̄3

has the truth table 10101011 and tg = 171.

Pros and cons of truth
tables

The truth table of a given function is always canonical. They provide a

simple way to represent and manipulate Boolean functions. However,

they are not practical for functions that have more than 16 inputs, due

to their exponential growth in size in terms of the number of inputs.

2.2.2 Sums of Products

Sums of products Another more compact minterm-based representation is the two-level

sum of products (SOP), which is a Boolean sum (OR, +) of cubes, S =
c1 +·· ·+ck . Assume that a Boolean function f is represented as an SOP

S f . The SOP can be also represented as the set of cubes that comprise

the sum of cubes by representing the positive, negative and don’t-care

variables of the cubes with 1, 0 and −, respectively.

Example 2.2.2. Consider the functions f and g from Example 2.2.1. The

on-set SOP of the two-input function f , S f = x1x2, can be also written

as S f = {11}. The on-set SOP Sg = x1x2 +x1x̄3 + x̄1x̄3 of the three-input

function g the can be also written as Sg = {11−,1−0,0−0}.

Prime cubes and
irredundant SOPs

A cube is prime, if no literal can be removed from the cube without

changing the value that the cube implies for f . A cube that is not prime,

can be expanded by substituting at least one literal with a don’t-care.

The SOP is irredundant if each cube is prime and no cube can be deleted

without changing the function.

Pros and cons of
SOPs

Typically, a canonical SOP refers to the canonical disjunctive normal

form that represents a sum of minterms and is canonical for a given
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function, but these SOPs are redundant. However, for a given function,

some algorithms [Minato, 1992] can generate canonical irredundant

SOPs that depend only on the input variable order. The disadvantage of

SOPs is that their two-level representation leads to an ineffective ma-

nipulation of large logic nodes. Moreover, they are inefficient for some

arithmetic, error correcting, and telecommunication circuits that are

rich with XOR logic. For example, Figure 2.1b shows that the SOP of the

sum output, which implements a 3-input XOR gate, is composed of four

complete cubes (i.e., minterms), and the carry output is represented

with 3 cubes, each composed of only 2 literals.

2.2.3 Binary Decision Diagrams

Binary decision
diagrams

One of the fundamental representations of Boolean functions are the

BDDs that were first introduced by Lee et al. [1959] and Akers [1978].

A binary decision diagram (BDD) is a DAG with decision nodes repre-

senting the input variables of the Boolean function and terminal nodes

representing either a constant 1 or 0. One of the decision nodes is the

root node of the DAG. Each decision node has two output edges labelled

with 0 and 1, and it actually represents a 2-to-1 multiplexer. Any path

from the root node to any terminal 1 or 0 node defines a cube for which

the represented Boolean function evaluates to 1 or 0, respectively. For

example, Figure 2.1c shows the BDD of the full adder in which some

decision nodes are shared among the two outputs.

Refinements of BDDsSeveral refinements of the BDDs have been proposed in the litera-

ture [Wegener, 2000], such as transformation binary decision diagrams

(TBDDs) [Goldberg et al., 1997], biconditional binary decision diagrams

(BBDDs) [Amarù et al., 2013], and zero-suppressed decision diagrams

(ZDDs) [Mishchenko, 2014]. In general, the term BDD refers to the most

commonly used form, called reduced ordered binary decision diagram

(ROBDD) [Bryant, 1986], that is canonical for a particular function and

variable order.

Variable order in
BDDs

A BDD is ordered [Bryant, 1986] if the input variables appear in the

same order on all paths from the root to the terminal nodes. The size

of the BDD for a given function highly depends on the chosen variable

order. As finding the best variable order is NP-hard problem [Bollig

and Wegener, 1996], many efficient heuristics were developed [Rice and

Kulhari, 2008].
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Pros and cons of
BDDs

BDDs are typically canonical for a given variable order. However, due

to their canonicity, the size of the ordered BDDs is exponential, re-

gardless of the variable order for some practical functions where the

same inputs serve as both control and data [Bryant, 1991], which makes

BDDs often impractical for use. An example for such functions are

multipliers, floating-point alignment units, and the hidden weighted

bit function [Knuth, 2009]. There are some refinements that can relax

canonicity, but they are usually harder to manipulate.

2.2.4 And-Inverter Graphs

Boolean networks Another graph-based option for the representation of a Boolean func-

tion is a multi-level Boolean network. The Boolean network is a DAG

in which the internal nodes correspond to components implementing

a given logic function, such as gates or LUTs, and the directed edges

correspond to wires connecting these components. Incoming edges of

a node are called fanins and outgoing edges are called fanouts. The PIs

of the network are represented as source nodes without fanins, and the

POs are represented as sink nodes without fanouts. A transitive fanin

(TFI) or transitive fanout (TFO) cone of a node is a subset of network

nodes that are reachable through the fanin or fanout edges of the node,

respectively. A cut of a node n, called the root, is a set of nodes, called

leaves, such that each path from a PI to n passes through at least one

leaf. A cut is k-feasible if the number of leaves is less or equal to k.

And-Inverter Graphs One of the simplest and most commonly used Boolean networks is the

and-inverter graph (AIG) that is composed of two-input AND gates and

inverters [Brayton and Mishchenko, 2010; Hellerman, 1963; Kuehlmann

et al., 2002]. All internal nodes of the DAG are two-input AND gates,

whereas inverters are represented as attributes on the edges. The AIGs

have a special constant node that has no inputs, either representing a

Boolean 1 or 0. Any logic network can be converted to an AIG imple-

menting the same Boolean function of the POs in terms of the PIs.

Structural hashing One of the most important methods for AIGs is structural hashing. It

ensures that no two AND nodes in the AIG have the same two fanins,

including the inverters. Structural hashing is usually applied during the

creation of the AIG. It reduces the number of nodes in it and increases

the logic sharing in the network. For example, Figure 2.1d shows the

structurally hashed AIG of the full adder.
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Pros and cons of AIGsAIGs enable short runtimes and high-quality results for synthesis, map-

ping and verification due to their simplicity and flexibility, hence it is a

common data structure in many academic and industrial systems for

logic synthesis and verification. Their main disadvantage is that they

are not canonical.

2.3 Boolean Satisfiability

Conjunctive normal
form

A disjunction (OR, +) of literals forms a clause, t = l1 +·· ·+ lk . A propo-

sitional formula is a logic expression defined over variables that take

values in the set {0, 1}. To solve a SAT problem, a propositional formula

is converted into its conjunctive normal form (CNF) as a conjunction

(AND, ·) of clauses, F = t1 · · · · · tk . Algorithms such as the Tseitin trans-

formation [Tseitin, 1983] convert a Boolean function into a set of CNF

clauses.

Definition 1. Boolean satisfiabilityA Boolean satisfiability (SAT) problem is a decision prob-

lem that takes a propositional formula in CNF form and returns that the

formula is satisfiable if there is an assignment of the variables from the

formula for which the CNF evaluates to 1. Otherwise, the propositional

formula is unsatisfiable (UNSAT).

SAT solversA programme that solves SAT problems is called a SAT solver. SAT

solvers provide a satisfying assignment when the problem is satisfiable.

Otherwise, modern SAT solvers, such as MiniSat [Eén and Sörensson,

2003], can provide a proof of unsatisfiability, also called a refutation

proof. To define refutation proof, we need to first define the resolution

principle.

Definition 2. Resolution principleLet c1 = x +R1 and c2 = x̄ +R2 be any two clauses, such

that if there is a literal x in c1, then its complement, x̄, is a literal in c2.

The resolution principle says that the resolvent of the clauses c1 and c2

is the disjunction R1 +R2, given that R1 +R2 is non-tautological. The

literal x is called a pivot variable.

Definition 3. Refutation proofA refutation proof Π of a set of clauses C is a directed

acyclic graph (VΠ, EΠ), where EΠ is set of edges connecting the vertices

with their predecessor vertices, and VΠ, the set of vertices, presents a

set of clauses such that
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• for every vertex c ∈VΠ, c is either a root clause, such that c ∈C , or

c is an intermediate clause and represents the resolvent of its two

predecessors c1 and c2, and

• the unique leaf vertex is an empty clause.

Essentially, the resolvent is a necessary clause for the conjunction of the

original clauses to be satisfiable, and the refutation proof shows how

to pair clauses in order to derive necessary conditions for satisfiability

until the result is a contradiction. In Section 2.5, we show how the

refutation proof is used for building an interpolant.

Example 2.3.1. Consider the UNSAT set of clauses of Figure 2.4, which

is further discussed in Section 2.5: the refutation proof asserts that the

last two clauses can only be satisfied if b = 0 and, therefore, can be

replaced with their resolvent (a+c). Next, the clauses (ā+d) and (a+c)

can be replaced by the resolvent (c +d), and so on, until we obtain the

leaf clause 0, which proves that the original set of clauses is UNSAT.

Incremental SAT
solving with
assumptions

Modern SAT solvers can also determine the satisfiability of a problem

under given assumptions. Assumptions are propositions that are given

as input to the SAT solver for a specific single invocation of the SAT

solver and have to be satisfied for the problem to be SAT. The process of

determining the satisfiability of a problem under given assumptions is

called incremental SAT solving. Some SAT solvers support an internal

stack of assumptions, which enables adding and removing assump-

tions between consecutive SAT calls via a push/pop mechanism. With

this, the state of the SAT solver is preserved between incremental runs,

whereas incremental runs themselves enable reusing learned clauses

from previous calls of the SAT-solving procedure. Thus, both incremen-

tal SAT solving with assumptions and incremental adding/removing of

assumptions lead to flexibility and efficiency in SAT-based applications.

Example 2.3.2. For the function f (x1, x2, x3) = (x1 + x2)x̄3, which is

satisfiable for the following assignments of the inputs {010,100,110}, a

SAT solver without assumptions can return any of the given assignments.

But, if we give as input to the SAT solver the assumption x1 = 1, then

it returns either 100 or 110, because those two assignments satisfy the

given assumption.

A set of assumptions
for UNSAT

The subset of root clauses from the proof of unsatisfiability, which

belong to the original SAT problem, are called UNSAT core. Most appli-
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cations do not require the full proof of unsatisfiability nor the complete

UNSAT core. Thus, when the problem is UNSAT under a given set of

assumptions, some modern SAT solvers can return an abstraction of

the core as a subset of assumptions used in the proof of unsatisfiability,

which we call a set of assumptions for UNSAT. For example, the SAT

solver MiniSAT [Eén and Sörensson, 2003] provides a dedicated proce-

dure, called “analyze_final”, that returns a set of assumptions for UNSAT

in the form of a final conflict clause [Eén et al., 2010]. This feature is very

practical because it enables calls that evaluate to UNSAT to be as useful

as the ones that evaluate to satisfiable, without logging and traversing

the complete proof of unsatisfiability.

Example 2.3.3. Assume that a SAT solver was initialised with the func-

tion f from Example 2.3.2. If we call the SAT-solving procedure with the

assumptions x1 = 1 and x3 = 0, then the problem evaluates to UNSAT

as there is no satisfying assignment that satisfies the given assumptions.

If we ask for the set of assumptions for UNSAT, the SAT solver will re-

turn either the complete set {x1, x̄3} or the subset {x̄3} depending on the

SAT-solving algorithm.

2.4 Functional Dependency

Functional
dependency

The check for functional dependency ensures that a given function f

can be expressed by a given set of base functions G . Additionally, the

necessary and sufficient condition of functional dependency helps to

define the construction of the circuits from which an interpolant is built.

Definition 4. A function f (X ), defined over the variable vector X =
(x1, . . . , xm), functionally depends on a set of Boolean functions G =
{g1(X ), . . . , gn(X )} if there exists a Boolean function h such that f (X ) =
h(g1(X ), . . . , gn(X )) [Jiang et al., 2010].

The functions f , gi , and h are called target function, base functions, and

dependency function, respectively.

Example 2.4.1. Consider the carry function of a 2-bit adder c1

c1 = (a1 ·b1)+ (a0 ·b0 · (a1 +b1)),

which is defined over the variable vector X = (a0,b0, a1,b1), as a target

function. Given is a set of base functions G = {g1, g2, g3, g4}, where
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Figure 2.2 – Representation of a target function with a set of base functions. The target function c1

from Example 2.4.1 is implemented using the set of base functions G and the dependency function h3.
A dependency function hi exists if and only if the target function c1 functionally depends on the set of
base functions G .

g1 = a1 ⊕b1,

g2 = a0 ·b0,

g3 = a1, and

g4 = b1.

As the target function c1 can be rewritten as any of the dependency

functions

h1 = (g3 · g4)+ (g2 · (g3 + g4)),

h2 = (g3 · g4)+ (g2 · (g3 ⊕ g4)), or

h3 = (g3 · g4)+ (g2 · g1),

it follows that f functionally depends on the set of base functions G .

Figure 2.2 shows the target function c1 implemented using the set G

and its dependency function h3.

Types of base
functions

A base function gi ∈ G is an essential base function, if f functionally

does not depend on G when gi is removed from the set G . Otherwise,

gi is an auxiliary base function. In Example 2.4.1, given c1 as target

function and the set G = {g1, . . . , g4}, the base functions g2, g3 and g4 are

essential, whereas g1 is an auxiliary base function.

Necessary and
sufficient condition for
functional dependency

Next, we give the necessary and sufficient condition for functional de-

pendency that is used to construct the circuit for checking if a function

f functionally depends on a set of base functions G .

Theorem 1. Let f (X ) be a target function and let G be a set of Boolean

functions G = {g1(X ), . . . , gn(X )}, all defined over the variable vector X .
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Figure 2.3 – A miter for checking if a target function depends on a set of base functions. The miter
constructed for checking if the function f12, with two outputs f1 and f2, and two inputs a and b,
functionally depends on the set of base functions G = {g1, g2}. Functional dependency exists if and only
if the miter evaluates to 0 for any two assignments of the primary inputs, that is, the miter is UNSAT.

For any two assignments P and Q of X , when f (P ) 6= f (Q), then the set

G contains at least one base function gi (X ), for i = 1, . . . ,n, such that

gi (P ) 6= gi (Q), if and only if, the function f functionally depends on the

set G [Jiang and Brayton, 2004].

Constructing a miter
for functional
dependency check

Following Theorem 1, to check if a function f functionally depends

on a set of base functions G , we construct a miter circuit that we can

transform to CNF clauses and give to a SAT solver. The miter evaluates

to 1 if and only if two assignments for the primary inputs P and Q

exist, for which each gi ∈ G evaluates to the same value and at least

one output of the function f evaluates to a different value. The output

that evaluates to a different value cannot be represented as a function

of G , and there is no functional dependency. Otherwise, if the miter

evaluates to 0 for all possible assignments of the primary inputs, then

f functionally depends on G . As an example, Figure 2.3 shows a miter

constructed for a multiple-output target circuit.

2.5 Craig Interpolation

Craig interpolationIn this section, we present the Craig interpolation theorem that was first

proved by W. Craig [1957], and we show the method for constructing

interpolants proposed by McMillan [2003].

Theorem 2. Let (A, B) be a pair of sets of clauses, such that A ·B is

unsatisfiable. Then, there exists a formula P such that
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(d) (b)(a + b + c)(a + d)(c)
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Figure 2.4 – Computing an interpolant from a refutation proof by using the McMillan’s algorithm.
The given refutation proof is for the pair of clauses A = (d̄) · (c̄) · (ā +d) and B = (a +b + c) · (b̄). The
intermediate clauses are derived using the resolution principle defined in Section 2.3. In square
brackets, we give the Boolean formulas p(c) assigned to each clause and the one assigned to the leaf
clause, p(0) = ā · c̄, is the interpolant.

• A implies P ,

• P ·B is unsatisfiable, and

• P refers only to the common variables of A and B [Craig, 1957].

The formula P represents an interpolant of A and B . Given the pair (A,

B) and their refutation proof, a procedure called interpolation system

constructs an interpolant in linear time and space in the size of the

proof [McMillan, 2003; Pudlák, 1997] .

McMillan’s
interpolation system

Next, we explain the construction of the interpolant through McMillan’s

system [McMillan, 2003].

Definition 5. Let (A, B) be a pair of clause sets and letΠ be their refuta-

tion proof. To all clauses c from Π, we assign a Boolean formula p(c),

such that

• if c is a root clause, and

– if c ∈ A, then p(c) is the disjunction of c’s global literals,

whose variable appear in both A and B , or

– if c ∉ A, then p(c) = 1;

• and if c is an intermediate clause, then let c1 and c2 be the prede-

cessor clauses of c, and let x be their pivot variable. Then,

– if x ∈ B , then p(c) = p(c1) ·p(c2), or

– if x ∉ B , then p(c) = p(c1)+p(c2).

TheΠ-interpolant of (A, B) is the Boolean formula assigned to the leaf

clause p(0) [McMillan, 2003].
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The Boolean circuit representing the interpolant is constructed by sub-

stituting the intermediate vertices and the leaf with gates corresponding

to the executed operation between their predecessors. Figure 2.4 shows

how the interpolant for A = (d̄) · (c̄) · (ā +d) and B = (a +b + c) · (b̄) is

constructed by following McMillan’s algorithm.

2.6 Shannon Expansion

Shannon expansionShannon expansion [Shannon, 1949] is a fundamental theorem used

for simplification and optimisation of logic circuits.

Theorem 3. Any Boolean function f defined over a variable vector

X = (x1, . . . , xn), can be written in the form

f = x̄i · f x̄i +xi · fxi ,

where f x̄i = f (x1, . . . ,0, . . . , xn) and fxi = f (x1, . . . ,1, . . . , xn).

Cofactors of a circuitThe expressions f x̄i and fxi represent, respectively, a negative and posi-

tive cofactor of f with respect to the control variable xi .

Example 2.6.1. Consider the function f (x1, x2, x3) = (x1 + x2)x̄3. The

cofactors of f with respect to the variable x3 are f x̄3 = f (x1, x2,0) =
x1+x2 and fx3 = f (x1, x2,1) = 0. Thus, the function can be reconstructed

as

f (x1, x2, x3) = x̄3 · f x̄3 +x3 · fx3 = x̄3(x1 +x2)+x3 ·0 = (x1 +x2)x̄3.
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3 Fast Generation of Lexicographic
Satisfying Assignments

LEXSAT returns the
smallest or greatest
satisfying assignment

Lexicographic satisfiability (LEXSAT) is a decision problem similar to the

SAT problem: for a given SAT formula it returns a satisfying assignment,

if the problem is satisfiable, or otherwise it returns UNSAT. The only

difference is that SAT can return any satisfying assignment, whereas

LEXSAT returns deterministically the one whose integer value under a

given variable order is the minimum (or maximum) among all satisfy-

ing assignments. The assignments with the minimum and maximum

integer values are called the lexicographically smallest and lexicograph-

ically greatest assignment, respectively. For simplicity, we assume that

LEXSAT always generates the lexicographically smallest assignment,

but the same principles apply when generating the lexicographically

greatest one.

Example 3.0.1. Assume a 4-input function f (x1, x2, x3, x4) with the sat-

isfying assignments for the inputs {0001,0101, 1010,1011,1101}. SAT can

return any of the given assignments, whereas LEXSAT always returns

either the lexicographically smallest assignment 0001 or the lexicograph-

ically greatest assignment 1101, depending on the user preference.

Two LEXSAT
algorithms by Knuth

Knuth [2015] mentions two implementations of an algorithm for gen-

erating satisfying assignments in a lexicographic order. The first one

calls a SAT solver multiple times [Knuth, 2015, Ex. 7.2.2.2-109]: the first

call generates a satisfying assignment that is iteratively minimised with

the successive SAT calls. The second one implements the same concept

by modifying the decision heuristic of the SAT solver in order to per-

This chapter is based on the work of a paper published at the 2016 International
Conference on Computer Aided Design [Petkovska et al., 2016b].
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form decisions on the input variables in a given order, whereas for the

other variables decisions can be performed in any order [Knuth, 2015,

Ex. 7.2.2.2-275]. However, Knuth does not evaluate the performance of

these two algorithms.

The implementation
that uses the SAT
solver repeatedly is

more robust than the
one integrated in the

SAT solver

Nadel and Ryvchin [2016] propose, independently, Knuth’s LEXSAT al-

gorithm, which they call OBV-BS, in the context of satisfiability modulo

theories (SMT) solving. They also propose another algorithm integrated

in a SAT solver. Their results are two-fold: First, the two proposed algo-

rithms are faster than algorithms based on SMT solvers. Second, they

show that the OBV-BS algorithm, which uses the SAT solver repeatedly,

is slower than the one integrated in the SAT solver but it is more robust:

it succeeds in finding solutions for difficult instances for which the in-

tegrated one exceeds the given time limit. A generalisation of Knuth’s

algorithm is also proposed by Marques-Silva et al. [2011].

A novel algorithm for
fast generation of

LEXSAT assignments

In this chapter, we propose our first SAT-based method—a scalable and

fast LEXSAT algorithm that also repeatedly uses the SAT solver. But,

instead of starting from a satisfying assignment that is iteratively min-

imised, we start from a potential assignment that is the lexicographically

smallest assignment that might be satisfying. Then, for each variable,

we iteratively either confirm that its assignment is identical to the one

in the lexicographically smallest satisfying assignment, or we increase

it, if possible. To achieve a good performance, we also propose a ver-

sion of the algorithm that is based on the concept of binary search.

Moreover, we propose methods that use the lexicographic properties

of the assignments to further improve the runtime when consecutive

satisfying assignments are generated in lexicographic order, which is re-

quired in applications such as the canonical SAT-based SOP generation

presented in Chapter 4. For all algorithms, we propose to use incremen-

tal SAT solving to mimic the alternative implementation that modifies

the SAT solver, which leads to a good performance while maintaining

the SAT solver unmodified for general use. The experimental results

show that our algorithm is faster than the first algorithm proposed by

Knuth [2015], both for generation of non-consecutive and consecutive

LEXSAT assignments.

LEXSAT can enable
canonicity in EDA

applications

We also identified that LEXSAT can be especially useful for a variety

of EDA applications that require canonicity. One example for such an

application is our generation of canonical SOP using SAT solvers, which
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is presented in Chapter 4. In addition, Section 3.2 gives a summary of the

applications that already use LEXSAT, as well as potential applications

that can benefit from it in the future.

The widespread
application of
LEXSAT

LEXSAT can be applied in other domains for applications that require

canonicity, the smallest or largest satisfying assignment, or consecutive

satisfying assignments. As presented in Section 3.3, the variations of

the SAT problem MAX-SAT, AllSAT, and #SAT can also be solved by a

LEXSAT-based algorithm. These algorithms are used in a wide range of

domains and expand the potential applicability of LEXSAT. Moreover,

by using the concept of LEXSAT, we propose an algorithm LEX-UNSAT

that can enable canonicity when the problem is UNSAT.

In the rest of the chapter, in Section 3.1, we give the formal definition

of LEXSAT. In Section 3.2 and Section 3.3, we explain how we can use

LEXSAT for EDA applications and for solving other SAT problems, re-

spectively. In Section 3.4, we describe two versions of our algorithm

and the methods for improving the runtime. We present our experimen-

tal setup and results in Section 3.5. In Section 3.6, we argue that our

implementation with repetitive SAT calls is expected to be as efficient

as an implementation that modifies the SAT solver. We conclude this

chapter and present ideas for future work in Section 3.7. The required

background information is provided in Section 2.1 and Section 2.3.

3.1 Lexicographic Boolean Satisfiability

Definition of LEXSATThe lexicographic satisfiability (LEXSAT) problem is a variation of the

SAT problem that takes a propositional formula in CNF form and a given

variable order, and returns a satisfying variable assignment whose inte-

ger value under the given variable order is minimum (maximum) among

all satisfying assignments. If the formula has no satisfying assignments,

LEXSAT proves it unsatisfiable.

State-of-the-art
LEXSAT algorithm

Recall that Knuth [2015] proposes two solutions for generating a LEXSAT

assignment. In this chapter, we compare our algorithms to the first so-

lution that calls the SAT solver multiple times. Assuming a function

f (x1, . . . , xn), with the first call, the algorithm generates an initial satis-

fying assignment a1 . . . an , or terminates if the problem is UNSAT. Then,

if the problem is SAT, it minimises the assignment iteratively. For this,

a pointer d is set to 0 before the first iteration, and later points to the
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next variable that is assigned to 1 and can be flipped to 0 in order to

decrease the assignment. Assignments for the variables xi for 1 ≤ i < d

are considered to be fixed. Thus, to minimise the assignment, first, d is

set to the index of the next variable that is assigned to 1. If d > n, then

no variable in the assignment can be flipped, and the algorithm returns

a1 . . . an . Otherwise, using the assumption mechanism, the SAT solver

is called again with the assumptions xi = ai , for 1 ≤ i < d , and xd = 0. If

the problem is SAT, the assignment a1 . . . an is updated with the newly

received assignment; otherwise, the old assignment is kept. Finally, it

performs another iteration for minimisation to find the next non-fixed

1 to be flipped.

Example 3.1.1. For a function f (x1, x2, x3, x4, x5), assume that the as-

signment 00101 is received with the first SAT call. Then, in the first

iteration for minimisation, the pointer d is set to 3, because x3 is the

first variable that can be flipped from 1 to 0. Next, the SAT solver is called

with the assumptions x1 = 0, x2 = 0, x3 = 0. If the problem is UNSAT,

the value of x3 remains 1, because there is no satisfying assignment that

satisfies the given assumptions (i.e., that starts with 000); thus, the old

assignment is kept and in the second iteration for minimisation d is set

to 5. Otherwise, assuming that the SAT solver returns the assignment

00010, it is considered as a potential assignment in the second iteration,

so d = 4.

3.2 LEXSAT for EDA Applications

NPN classification for
large functions

Although LEXSAT has emerged only recently, it has already been shown

useful for several EDA applications. For example, Soeken et al. [2016]

show that LEXSAT enables heuristic NPN classification of large func-

tions with up to 194 variables. The same heuristic algorithm was previ-

ously limited to functions with up to 16 variables, for which truth tables

could be computed [Huang et al., 2013]. However, LEXSAT enables

comparing two functions f (X ) and g (X ), where X is a set of variables

X = {x1, . . . , xn}, by solving the SAT problem defined with the formula

f (X )⊕ g (X ), which is commonly used for equivalence checking of two

circuits [Brand, 1993]. Thus, if the problem is UNSAT, then the functions

are identical, i.e., f = g . Otherwise, if the problem is satisfiable, then the

smallest LEXSAT assignment defines the most significant bit for which

the truth tables of f and g differ. By simulating this assignment for one
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of the functions, it can be determined which one has a truth table with

a larger value. For example, if LEXSAT returns an assignment A and if

f (A) = 0, then f < g .

Correcting a cell
placement during
physical design

LEXSAT is also used for fixing a cell placement during the physical

design stage of an industrial EDA flow [Nadel and Ryvchin, 2016]. By

finding the maximal value of a bit-vector, which encodes that a potential

violation is solved, a fixer tool generates a placement that has as few

violations as possible while giving preference to fixing high-priority

violations that are encoded with the most significant bits of the bit-

vector.

SAT-based generation
of canonical SOPs

Another example is the work presented in Chapter 4, where LEXSAT

enables generation of canonical SOPs by using a SAT solver because

it generates assignments in a deterministic lexicographic order. For

a given function and a variable order, an SOP generated by using this

method is unique and is independent of the input implementation of

the function, the used SAT solver, and the encoding of the problem.

Canonical simulation
vectors and canonical
signatures

Moreover, assuming a function f (x1, . . . , xn), if the assignments of the d

most left variables xi , where 1 ≤ i ≤ d for some d ≤ n, are fixed to some

value, LEXSAT would generate an assignment that is lexicographically

closest to the value defined when the d most left variables are assigned

to the fixed values and the rest of the variables x j , where d +1 ≤ j ≤ n

are assigned to 0.

Example 3.2.1. For the function f (x1, x2, x3, x4) from Example 3.0.1, if

we fix the most left variable x1 to 1, then LEXSAT returns the assignment

1010 as lexicographically smallest because it is the satisfying assignment

with the smallest integer value after the assignment 1000.

With this, LEXSAT enables generating canonical simulation vectors

used to generate canonical signatures for Boolean functions using a SAT

solver. Similarly, applications such as constraint solving [Yuan et al.,

2004] and random assignment generation [Nadel, 2011] can benefit

from LEXSAT, because it can derive the closest satisfying assignments

for random valuations of inputs.

Canonicity enables
caching results of
intermediate
computations

In general, because LEXSAT generates deterministic assignments, it

enables canonicity in SAT-based applications with two important con-

sequences: On the one hand, the result of computation depends only

on the Boolean function and the user-specified variable order (and
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is independent of the SAT solver and the problem representation, in

particular, of the CNF generation algorithm). On the other hand, sub-

problems encountered during SAT solving can be cached in a way sim-

ilar to how BDD-based applications cache the results of intermediate

computations, resulting in runtime reduction. To this end, BDD-based

applications maintain a hash table mapping BDD nodes into results of

computation for these nodes. Similarly, a SAT-based application can use

LEXSAT to compute a canonical representation of Boolean functions

(such as the canonical SOP mentioned above). This canonical represen-

tation can be used as a hash key in a table of computed results, similarly

to how BDD nodes are used as hash keys in BDD-based applications.

Approximate
computing and bug

characterisation

In addition, algorithms for approximate computing [Soeken et al., 2016b;

Venkatesan et al., 2011] can use LEXSAT to compute the worst-case er-

ror by finding the lexicographically greatest solution for the difference

between the approximate output and a correct reference version for all

possible inputs. In formal verification, LEXSAT can analyse bugs that

the SAT solver finds when solving verification instances. Suppose, for

example, a satisfying assignment is found that indicates a mismatch

between the specification and the implementation of a hardware design.

LEXSAT can determine the lexicographically closest correct minterms

before and after the buggy minterm. The difference between the two

correct minterms outlines the region of the input space where the bug

is present. When one bug is characterised in this way, a question can

be asked: Are there other bugs before and after the given one in the

lexicographical order? Repeatedly calling LEXSAT enables exploring

the input space step-by-step, and understanding the distribution and

the size of buggy regions, which could provide crucial information for

debugging.

In summary, an appealing aspect of LEXSAT is that it enables canonicity

in SAT-based applications, which leads to the same benefits BDD-based

applications reap from the canonicity of BDDs that are unique for a

given function and for a given variable order. Furthermore, there could

be practically important applications of LEXSAT in verification, such

as “canonical” random simulation based on evenly-distributed input

patterns, or bug characterisation based on the exploration of input

space performed by LEXSAT.
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3.3 LEXSAT for SAT Algorithms

In this section, we present ideas for solving variations of the SAT prob-

lem by using LEXSAT or its concept: first, for solving the existing AllSAT,

#SAT, and MAX-SAT, and then for the novel LEX-UNSAT problem. Fu-

ture work can be focused on implementing and evaluating these ideas.

The AllSAT and
#SAT problems

The AllSAT and #SAT problems are closely related. On the one hand, for

a given CNF formula, the all solutions satisfiability (AllSAT) problem,

which is also called model enumeration, generates partial satisfying

assignments that form a logically equivalent disjunctive normal form

(DNF) formula; a DNF formula F is a disjunction (OR, +) of cubes,

F = c1 + ·· · + cn , where ci for 1 ≤ i ≤ n represent cubes. The AllSAT

problem has many diverse applications including data mining [Jabbour

et al., 2013] and formal verification [Toda and Soh, 2016]. On the other

hand, the counting satisfiability (#SAT) problem, which is also called

propositional model counting, returns the total number of satisfying

assignments. The #SAT became an important component in domains

of artificial intelligence, planning, model checking, and hardware test-

ing [Belle, 2016; Burchard et al., 2015].

Solving AllSAT and
#SAT by using
LEXSAT

To solve these two problems, we could identify regions in the Boolean

space with successive satisfying assignments. First, we have to initialise

two SAT solvers, one with the on-set and another with the off-set of

the problem; for convenience we call them on-set SAT solver and off-set

SAT solver, respectively. Then, we have to find, in an alternating fash-

ion, LEXSAT assignments from the on-set and the off-set: By using the

on-set SAT solver, we could first find the smallest LEXSAT assignment

from the on-set, Mon, that comes after the last generated off-set assign-

ment; by using the off-set SAT solver, we could then find the smallest

LEXSAT assignment from the off-set, Moff, that comes after the last gen-

erated on-set assignment. The integer difference Moff −Mon represents

the number of on-set assignments in the Boolean space in the range

[Mon,Moff). Thus, to solve #SAT, we should sum up the integer differ-

ences Moff −Mon of all computed (Mon, Moff) pairs. Whereas, to solve

AllSAT, we should generate DNF cubes that would represent the on-set

assignments in the range [Mon,Moff).

Example 3.3.1. Assume a 4-input function f (x1, x2, x3, x4) with the sat-

isfying on-set assignments {0011,0100,0101,1100,1101,1111}. First,

with the on-set SAT solver, we can find the smallest on-set LEXSAT as-
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signment that is greater than or equal to 0000, which is Mon = 0011.

Next, using the off-set SAT solver, we can find the smallest off-set

LEXSAT assignment greater than 0011, which is Moff = 0110. The integer

difference between Moff−Mon is 3, because there are three assignments

in the range [0011,0110). Thus, for #SAT, we should add 3 to the final

count of assignments. Whereas, for AllSAT, we should add to the DNF

the disjoint cubes 0011 and 010− that cover the three assignments.

These LEXSAT-based methods can be particularly useful for problems

that satisfy the following two conditions. First, obtaining the CNF de-

scription of the off-set should be easy. For a problem that represents a

Boolean function, this can be performed by just negating the primary

output. Unfortunately, if only the CNF is available, complementing it

might be hard when the CNF is too large. Second, the on-set should

be sparse but not fragmented. This method would be impractical if

the onset is very fragmented, such as in the case of a multi-input XOR,

when we would need to switch an exponential number of times between

on-set and off-set.

The MAX-SAT
problem and its

variations

For a given propositional formula in CNF form, the maximum satisfi-

ability (MAX-SAT) problem returns an assignment for the variables of

the formula that satisfies the maximum number of clauses. MAX-SAT is

usually executed for UNSAT problems, because in satisfiable problems

all clauses are satisfied by the returned satisfying assignment. There

are several variations of MAX-SAT, among which the most used are

weighted MAX-SAT and partial MAX-SAT. For a given set of weights for

the clauses, weighted MAX-SAT returns an assignment that maximises

the sum of weights of the satisfied clauses. For a given division of the

clauses into hard and soft clauses, the partial MAX-SAT returns an as-

signment that satisfies all hard clauses and the maximum number of

soft clauses. Both the original problem and its variations are used in a

wide range of domains, such as EDA [Chen et al., 2009; Le et al., 2013],

data analysis and machine learning [Berg et al., 2015], and automotive

configuration [Walter et al., 2013].

Solving MAX-SAT
and its variations by

using LEXSAT

LEXSAT can be used as yet another solution for the MAX-SAT problem,

and notably, it can be easily extended to solve its variations. First, we

have to add a variable that evaluates to 1 when the clause is satisfied.

Next, these new clauses can be connected either with a sorting network

or with an adder structure that would sum up that total number of

satisfied clauses. A sorting network can be used only if all clauses have a
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unit weight; whereas to solve the weighted MAX-SAT problem, for each

clause, we can add a 2-to-1 multiplexer an input to the adder structure.

This multiplexer outputs the weight of the clause when the clause is

satisfied, or 0 otherwise. Finally, similarly to the approximate computing

application from Section 3.2, we could then find an assignment for the

variables of the original formula that maximises the output of the sorting

network or the adder structure.

Novel algorithm that
enables canonicity
when using sets of
assumptions for
UNSAT

Finally, LEXSAT brings canonicity only for applications that rely on

satisfiable calls. A solution is still required for applications that rely on

UNSAT calls, because the received proof of unsatisfiability and the set

of assumptions for UNSAT are non-canonical. By using the concept of

LEXSAT, we can define and solve a new problem, called LEX-UNSAT,

that brings canonicity whenever a set of assumptions for UNSAT is used.

When the problem is
UNSAT, LEX-UNSAT
returns a canonical set
of assumptions for
UNSAT

The lexicographic unsatisfiability (LEX-UNSAT) problem takes as input

a propositional formula in CNF form, a given variable order, and a set of

assumptions. If the problem is UNSAT, LEX-UNSAT returns a bit-stream

in which each bit represents if the corresponding assumption belongs to

the set of assumptions for UNSAT, and whose integer value is minimum

(maximum) under the given variable order and assumptions. If the

formula is satisfiable, LEX-UNSAT proves it satisfiable.

Comparison of
LEXSAT and
LEX-UNSAT

Compared to LEXSAT in which the returned bit-string represents an

assignment for the input variables, LEX-UNSAT returns a bit-string in

which each bit encodes if the corresponding assumption is used in the

proof of unsatisfiability. An assumption represented with 1 is used and

thus included in the set of assumptions for UNSAT, whereas an assump-

tion represented with 0 is not included. Consequently, to minimise the

returned bit-stream, LEXSAT that uses satisfying assignments, whereas

LEX-UNSAT uses the set of assumptions for UNSAT.

Example 3.3.2. Assume a 5-input function f (x1, x2, x3, x4, x5) with the

satisfying assignments for the inputs {00110,00111,01001,11011}. If

we call LEX-UNSAT for f with the assumptions x1x2x3x̄4, which would

be encoded with the bit-string 11110, it would return the lexicograph-

ically smallest solution 00110 that proves that there is no satisfying

assignment that satisfies the assumptions x3x̄4. Note that the set of

assumptions for UNSAT x̄4x̄5 that has globally the lexicographically

smallest bit-string 00011 is not returned, as the returned solution also

depends on the assumptions given as input.
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3.4 Generating Lexicographic Satisfying

Assignments

In this section, we first describe a simple and a binary search-based ver-

sion of our algorithm for generation of LEXSAT assignments. Then, we

describe several methods that improve their runtime when generating

consecutive LEXSAT assignments.

3.4.1 Simple Version

The initial assignment
is received as input

Instead of using a SAT solver to find the initial assignment, our algo-

rithm receives as input an initial assignment a1 . . . an that, in this case,

is smaller or equal to the next LEXSAT assignment. When generating

consecutive LEXSAT assignments, this enables the search to start from

the last generated LEXSAT assignment. For the first assignment or when

generating non-consecutive assignments, for a function f (x1, . . . , xn),

the initial assignment is ai = 0 for 1 ≤ i ≤ n. Having this initial assign-

ment, our algorithm iteratively verifies if the assignment of each variable

can be fixed or if it should be increased. With this, it converts the initial

assignment into the LEXSAT assignment that is returned as output.

Basic idea A simple version of our algorithm fixes the assignments of the variables

one by one. A pointer d , which is initially set to 1, gives the index of the

first non-fixed variable whose assignment should be fixed, whereas for

the previous variables the assignments xi = ai , for 1 ≤ i < d , are already

fixed. To fix the assignments, a SAT solver is called iteratively with the

assumptions xi = ai , for 1 ≤ i ≤ d . If the problem is SAT, then there is

a satisfying assignment that starts with a1 . . . ad and d is incremented.

Otherwise, if there is no satisfying assignment that starts with a1 . . . ad ,

the problem is UNSAT. In this case, if ad = 0, we set ad = 1, set ai =
0 for d < i ≤ n to keep the assignment the smallest possible for the

future iterations, and perform another iteration. But, if the problem is

UNSAT when ad = 1, then there is no satisfying assignment both when

ad = 0 and ad = 1, hence the algorithm returns UNSAT. Once d > n,

the assignments for all variables are fixed and a1 . . . an is returned as a

LEXSAT assignment.

Example 3.4.1. To generate the first LEXSAT assignment for a function

f (x1, x2, x3, x4, x5), the received initial assignment is 00000. Initially,

d = 1 and the first SAT call assumes x1 = 0. If the problem is SAT, then d
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is incremented to d = 2, and in the next iteration the SAT call assumes

x1 = 0 and x2 = 0. Otherwise, if the problem is UNSAT, we flip a1 = 1,

and iterate with the assumption x1 = 1. This time, if we receive SAT,

we increment d , and in the next iteration the SAT call assumes x1 = 1

and x2 = 0. But, if we receive UNSAT again, it means that there is no

assignment both with x1 = 0 and x1 = 1, and thus we return UNSAT.

Improving
performance by
learning from
satisfying assignments

Similarly to the algorithm by Knuth [2015] described in Section 3.1,

when the SAT solver returns a satisfying assignment, we can learn some

variable assignments from it. Thus, we always save the last satisfying as-

signment, and use it as follows. First, same as before, if the first variable

assigned to 1 after d is on position d+t , where 1 ≤ t ≤ n−d , then we can

learn and fix to 0 the t−1 variables between d and d+t . Moreover, in our

case, the potential assignment a1 . . . an is the lexicographically smallest

assignment that might be satisfying. Thus, if the potential assignment

for a variable xi is ai = 1, then we cannot flip it to 0 in order to minimise

the assignment as in the algorithm by Knuth. This enables us to learn

from the SAT solver and fix all assignments up to the first variable for

which the potential assignment and the assignment returned by the

SAT solver differ. Assume that the last satisfying assignment returned

by the solver is v1 . . . vn . Instead of incrementing d by 1, we can set it to

the index i , such that a j = v j for 1 ≤ j < i and ai 6= vi . Finally, same as

Knuth’s algorithm, for a given literal xd , where 1 < d ≤ n, with vd = 1, if

we get UNSAT when assuming xd = 0, we can immediately fix xd to 1,

as this value is confirmed by the last satisfying assignment.

Example 3.4.2. For a function f (x1, . . . , x6), assume that 101000 is re-

ceived as an initial assignment. When the SAT solver is called with the

assumption x1 = 1, it returns a satisfying assignment 101101, which is

saved as a last satisfying assignment. Besides fixing x1 = 1, from this

assignment, we can learn and fix x2 = 0 and x3 = 1, because their initial

assignments are confirmed by the last satisfying assignment. The vari-

able x4 is the left-most variable for which the assignments differ and

might be flipped to 0, so for the next iteration we set d = 4 and call the

SAT solver with the assumptions x1 = 1, x2 = 0, x3 = 1 and x4 = 0. If the

problem is SAT, we fix x4 to 0 and update the last satisfying assignment.

But, if the problem is UNSAT, from the last satisfying assignment 101101,

we already know that the problem is satisfiable when x4 = 1, we can

additionally fix x5 = 0, and set d = 6 for the next iteration.
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3.4.2 Binary Search-Based Version

Speculative version
based on binary search

To further enhance the simple version of our algorithm, instead of fixing

the assignments of variables one by one, we propose to set the pointer

d using binary search. Two additional pointers l and r show the first

and last variable with non-fixed assignments, respectively, and initially

are set l = 1 and r = n. Then, d is set to the middle variable in the array

of variables bounded by xl and xr . This assumes the assignments of the

left half of the variables xi , where 1 ≤ i ≤ d , in the first iteration. Later,

whenever the SAT solver returns SAT, it confirms that a satisfying assign-

ment that starts with a1 . . . ad exists. As shown in Section 3.4.1, from

the returned satisfying assignment, we can confirm and fix t additional

assignments from the potential assignment, where 0 < t < n −d . After

this step, the assignments for the variables xi , where 1 ≤ i ≤ d + t are

fixed. For the next iteration, we set l = d + t +1 and r = n to assume

the assignments for the non-fixed variables in the right half. Otherwise,

if the problem is UNSAT, if ad = 0, then we proceed as in the simple

version of the algorithm: we set ad = 1, set ai = 0 for d < i ≤ n for the

future iterations, and perform another iteration; whereas, if ad = 1, for

the next iteration r = d −1 to assume fewer non-fixed variables.

Example 3.4.3. To generate the first LEXSAT assignment for a function

f (x1, x2, x3, x4, x5, x6), the initial assignment 000000 is received as input.

Initially, l = 1, r = 6 and d = 3. Thus, the first SAT call would assume

x1 = 0, x2 = 0, and x3 = 0. If the problem is SAT and the satisfying

assignment 000010 is returned, then the assignment x4 = 0 is learned as

it is the same in the initial assignment, and the values of the pointers

are updated to l = 5, r = 6 and d = 5 for the next iteration. Otherwise, if

it is UNSAT, we would first try the assumptions x1 = 0, x2 = 0, and x3 = 1.

This time, if we receive SAT we would proceed same as before; whereas,

if we receive UNSAT again, for the next iteration, we would update the

values of the pointers to l = 1, r = 2 and d = 1 to assume fewer variables.

3.4.3 Runtime Improvement for Consecutive LEXSAT
Assignments

Generation of
consecutive LEXSAT

assignments

Applications such as the SAT-based generation of canonical SOPs, which

is presented in Chapter 4, generate consecutive satisfying assignments

in lexicographic order. To enable the generation of new satisfying as-

signments, each generated assignment is added to the SAT solver as a
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blocking clause, which is an additional clause that blocks known solu-

tions of the SAT problem.

Example 3.4.4. For the function f (x1, x2, x3, x4) from Example 3.0.1, the

first LEXSAT call returns the assignment 0001. If we add this assignment

as a blocking clause to the SAT solver, with the next LEXSAT call the

assignment 0101 is generated because it is the lexicographically smallest

satisfying assignment that is not blocked.

Methods for runtime
improvement

For these types of algorithms, we present three methods that improve

the runtime of the newly proposed algorithms. These methods benefit

from (1) the lexicographic properties of the assignments and (2) the fact

that, after the first LEXSAT call, the received initial assignment is the

last generated LEXSAT assignment.

Fixing leading 1sWhen generating consecutive LEXSAT assignments, after some time,

assignments that start with one or more consecutive 1s are generated.

Generating a lexicographically smallest satisfying assignment that starts

with one or more consecutive 1s implies that all unblocked satisfying

assignments are greater than the generated one, hence they also start

with the same number of 1s. Thus, when generating a LEXSAT assign-

ment, assume that ai = 1 for 1 ≤ i ≤ t , for some t ≤ n (i.e., the received

initial assignment starts with t consecutive 1s). Then, we can fix these t

assignments for the corresponding variables xi , and the initial value of

l (or of d in the simple version) is set to t +1 to point the first variable

that is assigned 0.

Example 3.4.5. For a function f (x1, x2, x3, x4, x5), assume that the last

generated LEXSAT assignment is 11010 and it is received as an initial

assignment. As the next LEXSAT assignment has to be greater than the

last generated assignment, we know that it also starts with 11. Hence,

we can skip assuming assignments for x1 and x2, and directly fix them

to 1. Initially, l is set to 3, r to 5, d is computed to be 4, and thus, the

first SAT call would be with the assumptions x1 = 1, x2 = 1, x3 = 0, and

x4 = 1.

Correcting the initial
assignment

When generating consecutive LEXSAT assignments, for the first LEXSAT

assignment, the initial assignment received as input assigns all vari-

ables to 0. Afterwards, for the following LEXSAT assignments, the initial

assignment is equal to the last generated LEXSAT assignment. But, the

first unblocked assignment is the one whose integer value is one unit
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greater than the last LEXSAT assignment. Thus, assuming that the last

LEXSAT assignment ends with t 1s, for some t ≤ n, i.e., an−i = 1 for

0 ≤ i < t , we flip the most right 1s by setting an−i = 0 and the first 0 from

the right by setting an−t = 1.

Example 3.4.6. For a function f (x1, x2, x3, x4, x5), assume that the as-

signment 11011 is generated with the previous LEXSAT call and received

as an initial assignment. As the next lexicographical assignment has to

be greater than the last generated, the first possible satisfying assign-

ment is 11100. Thus, we flip the 1s and the first 0 starting from the right

to get the potential assignment 11100.

Profiling the success
of the first SAT calls

For the LEXSAT algorithm, we consider satisfiable SAT calls as successful

because they confirm the assumed assignments, and unsatisfiable SAT

calls are considered unsuccessful. Furthermore, we propose to profile

the success of the first SAT call from the LEXSAT algorithm and use this

profile to alter the percentage of assumed assignments in the first SAT

calls in the subsequent invocation of the LEXSAT algorithm based on

binary search. This method does not apply to the simple version of the

algorithm.

The binary search-based version always sets the pointer d to point the

middle variable of the array of variables bounded by xl and xr . Thus,

with the first SAT call, we always assume the non-fixed assignments for

the first 50% of the variables between xl and xr . In the next iterations,

with every satisfiable SAT call, we increase the number of assumptions

and add 50% more of the right subarray. With every unsatisfiable SAT

call, we decrease the number of assumptions and the next time we use

only 50% of the assignments of the left subarray; for example, assuming

75% of the assignments in the first SAT call is equivalent to having two

consecutive iterations with successful SAT calls.

To profile and alter the percentage of assumed assignments in the first

SAT call, we keep a variable w that tells us how many iterations to

perform at once and in which direction we should perform them. We

iterate |w | times to decrease or increase the percentage when w < 0 or

w > 0, respectively. Initially, w = 0, which means that we should assume

50% of the assignments. If the first SAT call is satisfiable, we increase

w for 1 when w ≥ 0 or we set w = 1 when w < 0. If the first SAT call is

unsatisfiable, we decrease w for 1 when w ≤ 0 or we set w = 0 when

w > 0. Figure 3.1 shows how the percentage of assumed variables for
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Figure 3.1 – Profiling the success of the first SAT calls. The percentage of assumed variables for the first
SAT call of LEXSAT is changed depending on the success of the previous first SAT calls. In this case, at
most three iterations of binary search are performed at once.

the first SAT call and the value of w changes with the success of the first

SAT calls. In this example, at most three iterations of binary search are

performed at once.

Example 3.4.7. For a function f (x1, . . . , x10), assume that the assign-

ment 0000110000 is received as an initial assignment and w = 0. As

l = 1, r = 10 and w = 0, for the first SAT call d is computed as d =
b(1+10) ·0.5c = 5. Thus, we assume x1 = 0, x2 = 0, x3 = 0, x4 = 0 and

x5 = 1. If this call is satisfiable, then w is set to 1 for the next LEXSAT

assignment. Assume that with the following SAT calls the LEXSAT as-

signment 0000110001 is generated. Then, when generating the next

LEXSAT assignment, for the first SAT call, d = b(1+10)·0.75c = 8 because

w = 1, so instead of assuming the initial assignments only for the first

five inputs as before, we assume the assignments for the first eight in-

puts. For the remaining SAT calls of the current LEXSAT assignment,

we always use the regular binary search algorithm that always assumes

50% of the assignments.

3.5 Experimental Results

Algorithms
implemented in ABC

In this section, for convenience the algorithm from Knuth [2015] is

called KLEX (Section 3.1), and the simple and binary search-based ver-

sions of our algorithm are called SIMPLE and BINARY, respectively (Sec-

tion 3.4). We implemented in ABC [ABC] the three algorithms KLEX,

SIMPLE, and BINARY, as well as the methods for improving the runtime

from Section 3.4.3. ABC features an integrated incremental SAT solver

derived from an early version of MiniSAT [Eén and Sörensson, 2003].
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Also, this SAT solver supports interfaces for pushing and popping of

assumptions that we use in our implementations.

Benchmarks To evaluate the runtime of the algorithms and the speedup achieved

from the additional methods, we use the set of large MCNC benchmarks

and a set of logic tables from the instruction decoder unit [BenchIBM],

which we denote with LT-DEC. The names of the LT-DEC benchmarks

are given in the form “[NPI].[NPO]”, where NPI is the number of pri-

mary inputs and NPO is the number of primary outputs. For a given

benchmark, each algorithm generates a user specified number of con-

secutive LEXSAT assignments for each combinational output that is

each primary output and each latch input. However, to avoid repeatedly

calling the procedure for output functions with isomorphic circuit struc-

ture, we divide the outputs into equivalence classes. An equivalence

class contains outputs that implement an identical function expressed

over different inputs. Hence, for each benchmark, we actually generate

LEXSAT assignments only for the representative of each class.

Correctness checking For a given function and a variable order, the LEXSAT assignments are

deterministic and must be generated in the same order when generating

consecutive LEXSAT assignments. The correctness of our algorithms is

validated by generating assignments with each algorithm, and compar-

ing them to ensure that all algorithms generate the same assignments in

the same order. For generating a given number of LEXSAT assignments,

the number of SAT calls depends on how often the algorithm calls the

SAT-solving procedure.

Next, we compare the runtime of KLEX and the two versions, SIMPLE and

BINARY, of our algorithm that are enhanced with the methods described

in Section 3.4.3. We evaluate the three algorithms for both generation

of non-consecutive and consecutive LEXSAT assignments. Then, we

show the influence of the variable order on the runtime. Afterwards, we

evaluate the speedup achieved by each of the additional methods.

3.5.1 Runtime Comparison

Generation of
non-consecutive

LEXSAT assignments

Applications such as the NPN classification [Soeken et al., 2016a] require

multiple LEXSAT assignments, but they are not in a consecutive order

or they are for different functions. Therefore, we evaluate the runtime

and number of SAT calls required by each algorithm for generating a
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Figure 3.2 – Performance of the LEXSAT algorithms when generating 1000 consecutive assignments.
We show the speedup and reduction of the number of SAT calls achieved by our algorithms SIMPLE
and BINARY compared to the KLEX algorithm when generating a single LEXSAT assignment per combi-
national output. Next to each bar is the actual runtime (in milliseconds) and the number of SAT calls,
respectively. Next to the name of the benchmark, we give the number of LEXSAT calls in brackets.

single LEXSAT assignment. For each benchmark, the smallest LEXSAT

assignment is generated per combinational output. As the algorithms

generate these assignments in few milliseconds, to compare them pre-

cisely, we generate each LEXSAT assignment 1000 times, and then divide

the total runtime by 1000. As Figure 3.2 shows, both versions SIMPLE
and BINARY perform better than KLEX for almost all benchmarks. Be-

cause the algorithmic steps of SIMPLE are very similar to those of KLEX
when generating a single assignment, SIMPLE makes only 9.7% less calls

to the SAT solver, and thus is only 14.7% faster than KLEX. On the con-

trary, assuming more assignments at once with BINARY leads to about

2x less SAT calls and 2x faster runtime than SIMPLE. Finally, BINARY is

2.4x faster than KLEX and makes 2.1x less SAT calls.

Generation of
consecutive LEXSAT
assignments

Some applications, such as the LEXSAT-based generation of canonical

SOPs, which is presented in Chapter 4, require consecutive LEXSAT

assignments. In this case, the methods described in Section 3.4.3 also

contribute to reducing the runtime of SIMPLE and BINARY. For this ex-

periment, we generate at most 1000 consecutive LEXSAT assignments

for each combinational output. For each output we perform the experi-

ment 5 times, thus the presented results represent the average over 5
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Figure 3.3 – Performance of the LEXSAT algorithms when generating 1000 consecutive assignments.
We show the speedup and reduction of the number of SAT calls achieved by our algorithms SIMPLE and
BINARY compared to KLEX when generating 1000 consecutive LEXSAT assignments per combinational
output. Next to each bar is the actual runtime (in seconds) and the number of SAT calls (in thousands),
respectively. Next to the name of the benchmark, in brackets, is the number of LEXSAT calls (in
thousands).

runs. As Figure 3.3 shows, both SIMPLE and BINARY outperform KLEX:

SIMPLE makes 2.3x less SAT calls on average, which reduces runtime

5.1x; whereas, BINARY makes 2.7x less SAT calls on average, which re-

duces runtime 6.3x. Regarding the two proposed versions of our algo-

rithm, on average, BINARY has 16.1% less SAT calls that contribute to

18.9% better runtime than SIMPLE.

Thus, BINARY has the best performance both when generating non-

consecutive and consecutive LEXSAT assignments.

3.5.2 Influence of the Variable Order on the Runtime

The results and the
runtime might differ if
the variable order is

changed

The results of LEXSAT depend on the used variable order. As illustrated

by Example 3.5.1, the smallest LEXSAT assignment might be different

for different variable orders.

Example 3.5.1. For the function f (x1, x2, x3, x4) from Example 3.0.1, the

smallest LEXSAT assignment for the original variable order (x1, x2, x3, x4)

is 0001. In contrast, for the reverse variable order (x4, x3, x2, x1), the
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Figure 3.4 – Influence of the variable order on the runtime of the LEXSAT algorithms when generating
a single assignment. For the ten selected benchmarks, we show the runtime of KLEX, SIMPLE, and
BINARY for ten different variable orders. Each circle represents the runtime (in milliseconds) for one
variable order, and the box-and-whisker plots show the median and the quartiles.

smallest LEXSAT assignment is 0101, which is equivalent to 1010 when

considering the original variable order.

Although some applications have to use one specific variable order,

other applications are more flexible and can change the variable or-

der to improve the runtime. In particular, from the described LEXSAT

applications in Section 3.2 and Section 3.3, NPN classification, correc-

tion of cell placement, approximate computing, and MAX-SAT have

a restriction in the variable order and cannot change it; whereas, the

applications for generation of canonical simulation vectors and canon-

ical signatures, bug characterisation, AllSAT, and #SAT can work with

different variable orders.

Experimental setupIn this section, we evaluate the influence of the variable order on the run-

time when generating both non-consecutive and consecutive LEXSAT

assignments. Similarly to the experimental setup from Section 3.5.1, for

non-consecutive LEXSAT assignments, we generate a single assignment

for each combinational output and the reported results are average over

1000 runs; whereas, for consecutive LEXSAT assignments, we generate

1000 assignment for each combinational output and the reported re-

sults are average over 5 runs. For each benchmark, we use ten different

variable orders: the pre-defined variable order from the benchmark file
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Figure 3.5 – Influence of the variable order on the runtime of the LEXSAT algorithms when generating
1000 consecutive assignments. For the ten selected benchmarks, we show the runtime of KLEX, SIMPLE,
and BINARY for ten different variable orders. Each circle represents the runtime (in seconds) for one
variable order, and the box-and-whisker plots show the median and the quartiles.

and four randomised variable orders obtained by swapping variables,

as well as their five reversed versions. Note that the runtime results

presented in Figures 3.4, 3.5 and 3.6 do not match with the absolute

runtime presented in Figures 3.2, 3.3, 3.7 and 3.8 because the experi-

ments are executed on different machines with different configuration

and performance.

Results for ten
different variable

orders

For most benchmarks, the variable order does not have a significant

influence on the runtime. Figure 3.4 and Figure 3.5 show the results

for ten benchmarks when generating non-consecutive and consecutive

LEXSAT assignments, respectively. From each set, we show the five

benchmarks with the highest number of PIs; if two benchmarks have

equal number of PIs, we show the one with the highest number of POs.

From all benchmarks, we observe the largest difference in runtime for

the benchmark frisc from the MCNC set, which can be seen in Figure 3.6.

These results reveal that, from the three algorithms, KLEX is the most

sensitive to the variable order and BINARY is the least sensitive, which is

yet another advantage of the algorithm BINARY.

Note that the reported results in Section 3.5.1 are generated by using

the pre-defined variable order from the benchmark file.
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(a) Runtime when generating a single LEXSAT assignment.

(b) Runtime when generating 1000 consecutive LEXSAT assignments.

Figure 3.6 – Runtime variation for the benchmark frisc from the MCNC set for different variable orders.
Each circle represents the runtime of the given LEXSAT algorithm for one variable order, and the
box-and-whisker plots show the median and the quartiles.

3.5.3 Evaluation of the Methods for Runtime Improvement

The three methods for
runtime improvement

Section 3.4.3 presented the following methods for runtime improvement

when generating consecutive assignments.

1. Fixing leading 1s.

2. Correcting the initial assignment.

3. Profiling the success of the first SAT calls.

Evaluation by
generating the
complete truth table
of small benchmarks

As the method for fixing the leading 1s affects the runtime only when

generating assignments in which the most significant bits are assigned

to 1, we evaluate the methods by generating the complete truth table

(i.e., generating all assignments for which the function evaluates to 1)

for a subset of the MCNC benchmarks. The selected benchmarks have

at most 16 combinational inputs, which means that, for each combina-

tional output, we can have at most 65536 minterms when the function

is 1. As in Section 3.5.1, the presented results represent the average

over 5 runs. Figure 3.7 shows the runtime and number of SAT calls for

four of the selected benchmarks. First, it shows the results when the

algorithms SIMPLE (S) and BINARY (B) are used without the additional

methods. We can see that fixing the leading 1s (S+1, B+1) decreases

the runtime moderately. On the contrary, if we additionally correct the

initial assignment (S+1+2, B+1+2) then the runtime decreases by 32%,

on average. Finally, for BINARY, although the method for profiling the
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Figure 3.7 – Effect of the methods for runtime improvement on small benchmarks. The runtime and
number of SAT calls of SIMPLE (S) and BINARY (B) are shown when different methods for improving
the runtime are used for 4 benchmarks from the MCNC set. Next to the name of the benchmark, we
give the number of combinational inputs and outputs, respectively.

success of the first SAT calls in general decreases the number of SAT

calls, for functions with small number of inputs it slightly increases the

runtime.

Evaluation by
generating 1000

minterms for large
benchmarks

We have observed, however, a reduction of runtime for benchmarks with

a large number of combinational inputs. Figure 3.8 shows the runtime

and number of SAT calls required to generate 1000 minterms for a single

output of 4 large MCNC benchmarks. The considered outputs have

more than 70 combinational inputs. In this case, the method for fixing

leading 1s does not affect the number of SAT calls because the most

significant bits of all generated assignments are 0s.

Note that in Section 3.5.1 the results for SIMPLE and BINARY are ob-

tained when all methods are used (i.e., with S+1+2 and B+1+2+3, respec-

tively).

3.6 On Integrating the LEXSAT Algorithms in a SAT

Solver

Two options for
implementing

LEXSAT

The algorithms presented and evaluated in this chapter repeatedly use

the SAT solver. Another option is to modify the SAT solver such that it

generates LEXSAT assignments. For convenience, we call them OUTSAT

50



3.6. On Integrating the LEXSAT Algorithms in a SAT Solver

Figure 3.8 – Effect of the methods for runtime improvement on large benchmarks. The runtime and
number of SAT calls of SIMPLE (S) and BINARY (B) are shown when different methods for runtime
improvement are used for one of the outputs from 4 benchmarks from the MCNC set. Next to the name
of the benchmark, we give its number of combinational inputs.

and INSAT, respectively. Knuth [2015, Ex. 7.2.2.2-275] suggests an INSAT
implementation of KLEX. Nadel and Ryvchin [2016] show that an INSAT
algorithm is faster than an OUTSAT implementation of the KLEX algo-

rithm, but unlike the OUTSAT implementation, it is not scalable for

difficult instances. In this section, we discuss the difference in these two

implementation options.

Characteristics of an
INSAT implementation

Generally, in an INSAT implementation, the SAT solver performs deci-

sions on the input variables in the order and with the values given by

the LEXSAT algorithm, whereas for the other variables decisions can

be performed in any order. With this solution, to generate LEXSAT as-

signments for a function, a single SAT solver instance is created and, for

each LEXSAT assignment, the procedure for SAT solving is called only

once, with a given order for the input variables. Note that the concepts

of the algorithms SIMPLE and BINARY can also be used to determine the

order of issuing decisions and the values for the input variables.

Characteristics of an
OUTSAT
implementation

In our OUTSAT implementations, incremental SAT solving also enables

generating multiple LEXSAT assignments of a function by using only

a single SAT solver instance. Moreover, for each LEXSAT assignment,

the interfaces for pushing and popping assumptions, which we suggest

to use, preserve the internal state of the solver between consecutive

invocations of the SAT-solving procedure. With this, on a higher level,
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we mimic the solution based on modifying the SAT solver. With such

implementation, and by using the algorithm BINARY, we expect our

OUTSAT implementation to be as fast as an INSAT implementation, but

confirming this experimentally is left for future work.

Flexibility of an
OUTSAT

implementation

Moreover, assume a function with n inputs for which the assignments of

the first d inputs are already fixed, from some 1 ≤ d ≤ n. In the OUTSAT
implementation, the SAT-solving procedure can and do change the or-

der of decisions for the least significant n −d −1 variables whose value

is not yet fixed, when running the query to fix the value of the variable

d +1. However, the INSAT implementation always makes the same deci-

sions in the same order, and cannot change the order, even if this would

lead to faster UNSAT calls during LEXSAT solving. Hence, for difficult

instances, such as functions with large number of variables when differ-

ent variable orders affect the efficiency of the SAT-solving procedure, as

well as when all calls are not satisfiable, an OUTSAT implementation is

more scalable than an INSAT implementation.

3.7 Conclusion

Key insights In this chapter, we have presented a novel variation of the Boolean sat-

isfiability problem, called LEXSAT. In addition to determining the status

of a problem (satisfiable or unsatisfiable), LEXSAT returns satisfying as-

signments that are minimum (maximum) considering a given variable

order. We demonstrate that LEXSAT enable the development of SAT-

based algorithms that share desirable properties with BDDs but are less

likely to suffer from the scalability problems that beset BDD-based com-

putations in many EDA applications. In particular, LEXSAT can achieve

canonicity of the computed results: For a given Boolean function and a

given variable order, the result is deterministic and independent of the

SAT solver and the CNF generation algorithm. In the next chapter, we

demonstrate how this property of LEXSAT can be used for generation of

canonical SOPs.

We have also proposed a fast binary search-based algorithm for the

generation of LEXSAT assignments: it is 2.4 times faster than the state-

of-the-art LEXSAT algorithm. Furthermore, it proposes several improve-

ments to the LEXSAT algorithms for situations when it is applied it-

eratively and the resulting satisfying assignments are monotonically
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increasing. For such use, our proposed algorithm enhanced with the

new features is 6.3 times faster than the state-of-the-art LEXSAT algo-

rithm. Finally, to improve the performance without modifying the SAT

solver, we have proposed a way of using incremental SAT solving with

pushing and popping of assumptions.

Future applications of
LEXSAT

We expect LEXSAT to be applied in many EDA applications, such as

those presented in Section 3.2. Future work on LEXSAT could also focus

on exploring several other promising applications: SAT-based constraint

simulation, SAT-based factoring, SAT-based exclusive sum-of-product

minimisation, etc. Finally, as discussed in Section 3.3, other variations

of the SAT problem can be implemented by using LEXSAT, and future

work could implement and evaluate them.
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4 Progressive Generation of Canonical
Irredundant Sums of Products

Using SOPs in a
variety of applications

Minimisation of the two-level sum of products (SOP) representation

is well-studied due to the wide use of SOPs. In the past, SOPs were

principally used for mapping into programmable logic arrays (PLAs);

now SOPs are supported in many tools for logic optimisation and are

used for multi-level logic synthesis [Brayton et al., 1984; Rajski and

Vasudevamurthy, 1992], delay optimisation [Mishchenko et al., 2011a,

2017], and test generation [Ghosh et al., 1991], but they are also used for

fuzzy modelling [Gobi and Pedrycz, 2007], data compression [Amarù

et al., 2014b], photonic design automation [Condrat et al., 2011] and in

other areas.

SOPs for delay
optimisation

These publications show that, contrary to popular belief, research in

SOP minimisation and its applications are not outdated. For example, a

recent work uses SOPs for delay optimisation in technology indepen-

dent synthesis and technology mapping [Mishchenko et al., 2011a]. In

this work, improved quality is achieved by enumerating different SOPs

of the local functions of the nodes, factoring them, and finding circuit

structures balanced for delay.

SOPs for global
circuit restructuring

Another important application of SOP minimisation, which is used as

a case-study in this chapter, is global circuit restructuring. If a multi-

level circuit structure for a Boolean function is not available, or if the

circuit structure is of a poor quality, then a new circuit structure with

desirable properties, such as low area, short delay, good testability or

improved implicativity (if the circuit represents constraints in a SAT

This chapter is based on the work of a book chapter that will appear in a book published
by Springer [Petkovska et al., 2017].
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solver) should be derived. The best known and widely used method for

global circuit restructuring is computing SOPs of the output functions

in terms of inputs, factoring the multi-output SOPs, and deriving a new

circuit structure from the shared factored form. The main drawback of

this method is the lack of scalability of the algorithm for SOP generation

and minimisation.

Algorithms for SOP
generation and
minimisation

Starting with the Quine-McCluskey algorithm [McCluskey, 1956; Quine,

1952], many algorithms and heuristics for SOP generation and min-

imisation have been developed. Prior research falls into two broad

categories: BDD-based algorithms and ESPRESSO-style algorithms.

BDD-based algorithms
for generation and

minimisation of SOPs

In order to generate an SOP for a given Boolean function, techniques

based on BDDs, such as those of Minato-Moreale [Minato, 1992] and

SCHERZO [Coudert, 1994; Coudert et al., 1993b], first build a BDD

or a ZDD, then minimise the BDD/ZDD size by using some heuristic

approach to obtain a smaller SOP, and finally convert the BDD/ZDD to

an SOP. If building a BDD is feasible, then an SOP, even a suboptimal

one, can be generated. However, as previously explained, using BDDs

is often impractical due to the BDD memory explosion problem. An

additional drawback is that BDDs are incompatible with incremental

applications as they require building a BDD for the complete circuit

before converting it to an SOP. Despite these issues, to our knowledge,

the BDD-based method for SOP generation and minimisation is used

in most of the industrial tools, therefore scalability improvements of it

are highly desirable.

Algorithms for
minimisation of SOPs
based on ESPRESSO

The ESPRESSO-style algorithms are inspired by the first version of

ESPRESSO [Brayton et al., 1984]. For example, the logic minimiser

ESPRESSO-MV [Rudell and Sangiovanni-Vincentelli, 1987] is a faster

and more efficient version of ESPRESSO. But, although these techniques

avoid the memory explosion problem inherent in the use of BDDs, they

still incur impractical runtimes for large Boolean functions and only

minimise existing SOPs.

Existing SAT-based
solutions

Although SAT solvers were proposed as an alternative for many EDA

applications, to the best of our knowledge, there is still no complete

SAT-based method for SOP generation similar to the irredundant sum

of products (ISOP) algorithm for incompletely specified functions us-

ing BDDs [Minato, 1992]. Existing methods for SOP generation us-

ing SAT solvers are based on the enumeration of satisfying assign-
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ments [Morgado and Marques-Silva, 2005]. Sapra et al. [2003] proposed

using a SAT solver to implement part of ESPRESSO’s procedures for SOP

minimisation in order to speed them up. But, as they largely follow

the traditional ESPRESSO style of SOP minimisation, they operate only

on existing SOPs and do not consider generating a new SOP from a

multi-level representation of a Boolean function. Moreover, its runtime

and end results significantly depend on the SOP received as input.

A novel SAT-based
algorithm for
generating
irredundant SOPs

Accordingly, our main contribution in this chapter is our second SAT-

based method—a new engine for SOP generation and minimisation,

completely based on SAT solvers. Our method generates an SOP progres-

sively, building it cube by cube. We guarantee that the generated SOPs

are irredundant, meaning that no literal and no cube can be deleted

without changing the function. As we show with the experimental re-

sults, our algorithm generates SOPs with the size similar to that of the

BDD-based method [Minato, 1992]. Interestingly, for some circuits, we

generate smaller SOPs (up to 10%), which is useful in practical applica-

tions. For example, when a multi-level description of the circuit is built

using an SOP produced by the proposed SAT-based method, the area-

delay product of the resulting circuit, assuming unit-area and unit-delay

model, often decreases (up to 27%), compared to global restructuring

using BDDs.

Two main features characterise our SAT-based SOP generation and make

it desirable in various domains.

Benefits of the
progressive generation
of SOPs

First, we generate an SOP progressively, unlike BDD-based methods that

attempt to construct a complete SOP at once. The progressive computa-

tion enables generating a partial SOP for circuits whose complete SOP

cannot be computed given the resource limits. The partial SOPs can be

exploited by other applications that do not require the complete circuit

functionality, but work with partially defined functions [Chang et al.,

2010; Verma et al., 2009]. Moreover, for circuits with large SOPs, the

progressive generation enables predicting whether it is feasible to build

an SOP for a circuit, and checking if the SOP size is within the limits of

the methods that are going to use it. For this, at any moment, we can re-

trieve the number of outputs for which the SOP is already computed, as

well as the finished SOP portion of the currently processed output. We

can also easily compute an estimate or a lower-bound of the percentage

of covered minterms, considering a uniform distribution of minterms
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in the space or considering the size of the truth table, respectively. In

contrast, the termination time and the quality of results of the BDD-

based methods are unpredictable because the complete BDD has to be

built before converting it to an SOP.

Generation of
canonical SOPs by

using LEXSAT

Second, for the first time, we show that a SAT-based computation can

generate canonical irredundant SOPs. To this end, we combine (1) the

LEXSAT algorithm presented in Chapter 3 that, under a given variable

order, generates consecutive satisfying assignments in a lexicographic

order, and (2) a deterministic algorithm that expands the received as-

signments into cubes. For a given function and a variable order, the

assignments (i.e., the minterms) are always generated in the same or-

der, and each assignment always results in the same cube. Thus, the

resulting SOP is canonical: it is unique and independent of the input

implementation of the function. The canonical nature of the resulting

SOPs can be useful in the domains where previously only BDDs could

be used. For example, as suggested in Section 3.2, canonical SOPs can

be used for caching of intermediate results, similarly to how BDDs are

used. Also, canonicity brings regularity in the SOPs, hence the results

after using algorithms for factoring [Rajski and Vasudevamurthy, 1992]

are in some cases better.

The rest of the chapter is organised as follows. First, we describe our

algorithm for SAT-based progressive generation of irredundant SOPs in

Section 4.1. In Section 4.2, we give our experimental setup and discusses

the experimental results. Finally, we conclude and present ideas for

future work in Section 4.3. The required background information is

provided in Section 2.1 and Section 2.3.

4.1 SAT-Based SOP Generation

Using the algorithm
for multi-output
circuits, and for

incompletely specified
functions

In this section, we describe our SAT-based algorithm that progressively

generates an irredundant SOP for a single-output function. For multi-

output circuits, each output is treated separately. In this chapter, we

focus on completely specified functions, but the algorithm can be easily

used for incompletely specified functions by providing both the on-set

and off-set as an input to the algorithm. In the case of a completely

specified function, one of them is derived by complementing the other.

The given SAT-based formulation works for incompletely specified func-
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tions without any changes. Indeed, after extracting the first cube and

blocking it in the on-set of the function, the rest of the computation

is performed for an incompletely specified function, even if the initial

function was completely specified.

Overview of the
SAT-based SOP
generation

The presented algorithm iteratively generates minterms, expands them

into prime cubes, and adds these cubes to the SOP. The SAT-based

heuristics for minterm generation and cube expansion are described in

Section 4.1.1 and Section 4.1.2, respectively. Finally, to guarantee that

the resulting SOP is irredundant, it is post-processed to remove redun-

dant cubes, as described in Section 4.1.3. Additionally, Section 4.1.4

describes several techniques that reduce the runtime.

Different options for
the number of used
SAT solvers

The algorithm can be implemented with one SAT solver parameterised

to store both on-set and off-set. Alternatively, it can use two solvers,

one for on-set and one for off-set, which for convenience we call on-set

SAT solver and off-set SAT solver, respectively. In our implementation

of the algorithm, we use four different SAT solvers: for both on-set and

off-set, one is used to generate satisfying assignments, the other to

expand assignments to cubes. By employing four solvers, we ensure

that assignment generation and expansion do not interact with each

other during the SOP computation.

Computation of on-set
and off-set SOPs

The procedures described in the following subsections assume that

we are generating the on-set SOP. The same procedures are used to

generate the off-set SOP, by substituting the on-set SAT solver with an

off-set SAT solver and vice versa.

4.1.1 Generation of Minterms

Checking if the
function is a constant

In order to generate minterms for the on-set of a function f , we ini-

tialise a SAT solver with the CNF of f . Then, to discard the trivial case

when the function has a constant on-set, we solve the SAT problem by

asserting that f = 0. If the problem is UNSAT, then f is a constant 1, and

we return an SOP with one constant cube. Otherwise, if the problem is

SAT, we continue with one of the following methods for minterm gener-

ation. Figure 4.1 shows the flowchart of these methods, as well as their

connection with the other methods of the SOP generation algorithm.

59



Chapter 4. Progressive Generation of Canonical Irredundant Sums of Products

Remove 
redundant 

cubes
return the
on-set SOPUNSAT

Generate 
a LEXSAT
assignment

yes

no Generate 
a SAT

assignment

SAT Expansion of 
the minterm 
into a cube

Canonical?
SAT solver 
initialised 

with f

Figure 4.1 – Flowchart of the algorithm for minterm generation. Minterms are generated either as
satisfying or LEXSAT assignments. If the problem is satisfiable, the generated minterm is passed to
the cube expansion algorithm to generate a cube that would cover the minterm. Once all minterms
are covered by the generated cubes, the SAT problem becomes UNSAT, and the SOP is returned after
removing the redundant cubes.

Generation of
non-canonical SOP

To generate an on-set minterm, we call the SAT-solving procedure of an

on-set SAT solver. If the problem is SAT, an assignment for the inputs is

returned for which the function evaluates to 1. From the assignment,

we can generate a minterm for the function f in which the variables

assigned to 0 and 1 are represented with the negative and positive literal,

respectively. For example, for a function f (x, y, z), the assignment 110

implies the minterm x y z̄. Once a minterm is obtained, we expand it into

a cube using the heuristic procedure from Section 4.1.2. Next, we add

the cube with its literals complemented to the SAT solver as a blocking

clause, which is an additional clause that blocks known solutions of the

SAT problem. Thus, the next call of the SAT-solving procedure generates

a new minterm that is not covered by any of the previously generated

cubes. As long as the problem is SAT, we iteratively obtain a minterm,

expand it to a cube, and add the cube both to the SOP and to the SAT

solver as a blocking clause. The unsatisfiability of the problem indicates

that the generated SOP is complete and covers all on-set minterms.

Generation of
canonical SOP

Generating minterms from satisfying assignments received from a SAT

solver does not guarantee canonicity as SAT solvers return minterms

in a non-deterministic order that depends on the design of the solver

and the CNF generated for the function. Thus, to obtain canonicity,

we iteratively use the binary search-based LEXSAT algorithm BINARY
presented in Section 3.4.2. The algorithm BINARY receives as input a po-

tential assignment that is the lexicographically smallest assignment that

might be satisfying. This potential assignment is an assignment with

all 0s when generating the first minterm, and afterwards it is assigned

to the last generated minterm. Then, BINARY tries to verify and fix the

assignment of each variable defined with the potential assignment start-
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ing from the leftmost variables and moving to right. We also use the

proposed methods for runtime improvement, which are presented in

Section 3.4.3, fixing the leading 1s, correcting the initial potential as-

signment, and profiling the success of the first SAT call. Similarly to the

non-canonical SOPs, once we obtain a minterm, we expand it into a

cube and add it to the SAT solver as a blocking clause.

Example 4.1.1. For example, assume that for the function f (x1, . . . ,

x8), the last generated minterm 11000001 is received as an initial po-

tential assignment. As this minterm is covered by the last cube, this

assignment is not satisfying, so we can increase its value for 1 to get

the smallest assignment that might be satisfying 11000010. Next, we

fix the assignments of the leading 1s x1 = 1 and x2 = 1, because the

next lexicographically smallest assignment has to start with the same

leading 1s. Hence, we should only check the assignments for xi , for

3 ≤ i ≤ 8. Due to using binary search, with the first SAT call we assume

half of the unfixed assignments, and we give to the on-set SAT solver

the assumptions (x1, . . . , x5) = (1,1,0,0,0). Assume that the problem was

satisfiable and the SAT solver returned the assignment 11000011 for the

input variables. This assignment proves that an on-set minterm with

the assumed values exists, but we can also learn that the assignments

from the potential minterm x6 = 0 and x7 = 1 are correct. Next, to check

if the assignment for the last input x8 can be set to 0, we call the SAT

solver with the assumptions (x1, . . . , x8) = (1,1,0,0,0,0,1,0). If it returns

SAT, we return the potential assignment as a minterm because all as-

signments are verified and fixed. Otherwise, we flip x8 to 1 to increase

the potential assignment before returning it.

4.1.2 Expansion of Minterms into Cubes

In this subsection, we describe our SAT-based procedure that receives

a minterm and transforms it into a prime cube by iteratively removing

literals (i.e., substituting them with don’t-cares). For the on-set SOP, a

literal can be removed, if after its removal all minterms covered by the

cube do not overlap with the off-set. Figure 4.2 shows a flowchart of the

algorithm.

Canonical expansion
to prime cubes

The following deterministic algorithm expands a minterm into a cube

by ensuring that, after removing each literal, the cube covers only on-set

minterms. As the literals are removed always in the same order, which
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Figure 4.2 – Flowchart of the algorithm for expansion of minterms into cubes. The algorithm for
canonical expansion ensures that all generated cubes are prime. After a cube is generated, it is added
as a blocking clause to the SAT solver used for minterm generation, and another minterm is generated.

can be specified by the user, the algorithm is deterministic and pro-

duces canonical cubes when the given minterms are canonical. Hence,

to remove a literal, first, we assume that the literal is removed from the

cube, and an off-set SAT solver is run with assumptions for the remain-

ing literals of the cube. On the one hand, if the problem is UNSAT, then

no minterm covered by the cube belongs to the off-set, so we can extend

the cube by removing this literal. On the other hand, if the problem is

SAT, we cannot extend the cube because the SAT solver found an off-set

minterm that is covered by the extended cube.

Example 4.1.2. Assume that for the function on Figure 4.3, we received

the minterm x̄ y z̄t . To remove the literal x̄, we would call the off-set

SAT solver with the assumptions (y, z, t ) = (1,0,1). The SAT solver would

return SAT, which means that x̄ cannot be removed, because the cube

y z̄t is covering the off-set minterm x y z̄t . However, if we try to remove

the literal z̄ by calling the SAT solver with the assumptions (x, y, t) =
(0,1,1), then we would receive UNSAT because there are no off-set

minterms that satisfy these assumptions, so z̄ can be removed to obtain

the on-set cube c1.

Greedy canonical
literal selection and

cube expansion

To minimise the overlapping of cubes, we propose to remove literals in

two rounds. In the first round, they are removed greedily, after ensuring

that multiple on-set minterms are covered by expanding each literal.
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Figure 4.3 – An example for minimum SOP. A Karnaugh map shows the Boolean function f (x, y, z, t ) =
x̄ y t +x y z +x ȳ t with its prime cubes ci , where 1 ≤ i ≤ 5. The cubes c1, c2 and c3 are essential and they
compose the minimum SOP of f .

Example 4.1.3. Assume that for the function on Figure 4.3, the cube c1

was computed and added to the on-set SAT solver as a blocking clause.

Also, assume that as a second minterm x y zt is generated, which can be

extended by removing one of the literals x, y or t . If we remove x, we

will obtain the cube c4 that covers only one additional minterm with

respect to the existing cube c1; but if we remove y or t , we will obtain c2

or c5, respectively, each of which covers two yet uncovered minterms.

First round of
expansion for
generating cubes that
cover more than one
new minterm

For the minterm x y zt in Example 4.1.3, our expansion procedure skips

the opportunity to remove the literal x and, if possible, tries to expand

other literals. This greedy selection of literals decides to candidate a

literal li for removal, if by removing it, the expanded cube covers more

than one new minterm. To check if this condition is satisfied, we flip

li and provide it, along with the remaining literals of the cube, as an

assumption to an on-set SAT solver in which the already generated

cubes are added as blocking clauses. If the problem is UNSAT, then we

skip removing it temporarily. Otherwise, if the problem is SAT, then we

consider this literal for removal because by removing it we cover more

than one uncovered minterm. Once a literal is a candidate for removal,

we run the algorithm for canonical expansion described above to ensure

that it can be removed.

Second round of
expansion for
obtaining prime cubes

However, in this first round, we might skip some opportunities for ex-

pansion. Hence, in the second round, for each skipped literal, we exe-

cute the algorithm for canonical expansion. This guarantees that, after

the second round, no literal can be further removed, which means that
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the cube is prime. As we always try to remove literals in the same order,

this method generates a canonical SOP.

Fast non-canonical
expansion

If generating a canonical SOP is not required, we can substitute the first

round of expansion with a faster method to improve runtime: If in an off-

set SAT solver we assume the values from the received on-set minterm,

the problem is UNSAT and the SAT solver returns the set of assumptions

for UNSAT. As the returned literals are sufficient to prove unsatisfiability

in an off-set SAT solver, they construct a cube that covers only on-set

minterms, and we can remove literals that are not returned by the SAT

solver. However, the set of remaining literals is not always minimum,

hence we run additionally the algorithm for canonical expansion as a

second round to obtain a prime cube.

4.1.3 Removing Redundant Cubes

The initial SOP might
contain redundant

cubes

The cubes expanded with the methods from Section 4.1.2 are prime by

construction. However, by progressively adding cubes to the SAT solver,

as described in Section 4.1.1, we ensure that each cube is irredundant

with respect to the preceding cubes, but not with respect to the whole

set of cubes.

Example 4.1.4. For the function f from Figure 4.3, assume that the

cubes c1, c5, c2 and c3 are generated in the given order. The cube c5

is irredundant with respect to c1, because it additionally covers the

minterms x y zt and x ȳ zt , but it is contained in the union of c2 and c3.

An algorithm for
removing redundant

cubes

In order to produce an irredundant SOP, after generating all cubes, we

iterate through the cubes to detect and remove redundant ones. First,

we initialise a new SAT solver with clauses for all generated cubes and

we assume that all cubes are required. Then, by using the assumption

mechanism, for each cube ci , we check if there is an assignment for

which ci evaluates to 1 while all the other irredundant cubes evaluate to

0. If the problem is SAT, the cube is irredundant and the SAT solver re-

turns an assignment that corresponds to a minterm that is covered only

by ci . Otherwise, if the problem is UNSAT, then the cube is redundant,

and it is thus removed from the SOP and is excluded when checking the

redundancy of the following cubes. As we always try to remove cubes in

the order in which they were generated, this method is deterministic

and maintains canonicity when canonical SOPs are generated.
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Example 4.1.5. Considering the cubes from Example 4.1.4, to check

whether c3 is redundant, we set c3 = 1 by assuming the values x = 1,

y = 0 and t = 1. For the assumed values, the other cubes evaluate to

c1 = 0, c2 = 0 and c5 = z. Setting z = 0 leads to c5 = 0. Thus, the problem

is SAT and c3 is irredundant. The returned assignment 1001 defines the

minterm x ȳ z̄t that is covered only by c3.

4.1.4 Improving the Runtime

In this subsection, we present four techniques that improve the runtime

of the algorithm by enabling early termination and by treating some

special cases.

Simultaneous
generation of an
on-set and an off-set
SOP

For a given function, the SOPs of the on-set and off-set often differ

in size, where the SOP size is equal to the number of cubes in it. For

example, a three-input function implementing an AND gate, f (x, y, z) =
x y z, has an on-set SOP, f = Son = x y z with size 1, and an off-set SOP,

f̄ = Soff = x̄ + ȳ + z̄ with size 3. As we want to use the set with a smaller

SOP, we simultaneously generate two SOPs, for both the on-set and

off-set, by generating one cube at a time from each set. The generation

of cubes stops as soon as one SOP is complete. This way, if one set is

much smaller than the other, we can avoid the situation when the larger

set of cubes has to be completely generated before the smaller set is

discovered.

Prioritising outputs
with large SOPs

For multi-output circuits, before generating an SOP for each output,

we propose to sort outputs by size of their input supports. The outputs

with larger supports are processed first, as it is more likely that the

SOP generation for these outputs will exceed resource limits, so we can

determine if we should terminate the computation earlier.

Benefit from the
structure sharing:
dividing the outputs
into isomorphic
classes

To benefit from the structure sharing among the circuit outputs, we

implemented a method that decreases the runtime by detecting iso-

morphic outputs. For this, first, we divide the outputs into isomorphic

classes. Two outputs are isomorphic and belong to the same class, if

they implement an identical function using different inputs. Then, for

each class, we generate an SOP only for one output, the class repre-

sentative, and we duplicate it for the others. In Section 4.2.2, we show

that this leads to effective generation of an SOP only for 16.5% of all

combinational outputs and has a big influence on scalability.
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Benefit from the logic
sharing: generation of

a single CNF for all
outputs

Generating a CNF for each output is time consuming. Therefore, to

benefit from the logic sharing among the outputs, we can optionally

share one CNF that corresponds to the complete circuit. For this, first,

we generate the CNF of the circuit; then, for each output, we initialise a

SAT solver only with the part of the CNF for the corresponding output.

Besides improving the runtime, as Table 4.1 shows, this option some-

times leads to better results in terms of area-delay product after global

restructuring.

Opportunities for
runtime improvement

by exploiting
parallelism

There are several opportunities where computations are independent

and can be parallelised. First, the computation of the on-set and off-set

SOPs can be executed in parallel. Because now we compute sequentially

one cube for each SOP interchangeably, it is expected that this would

decrease the runtime by 2x. Second, instead of computing the SOP of

each output one after the other, we can also compute each of them in

parallel. Finally, for one SOP, we can compute cubes in parallel by gen-

erating minterms from different parts of the Boolean space. However,

in this chapter, all computations are done sequentially. Analysing and

exploiting the effect of parallelism is left for future work.

4.2 Experimental Results

In this section, we describe our experimental setup and compare the

proposed SAT-based algorithm with the state-of-the-art BDD-based

method.

4.2.1 Experimental Setup

Command from ABC
used for the
experiments

We implemented the SAT-based algorithm described in Section 4.1 as

a new command satclp in ABC [ABC]. ABC features an integrated SAT

solver based on an early version of MiniSAT [Eén and Sörensson, 2003]

that supports incremental SAT solving. Furthermore, ABC provides an

implementation of the BDD-based method for SOP generation, specifi-

cally the BDD construction for a multi-level circuit (command collapse)

and the BDD-based ISOP computation [Minato, 1992] (command sop).

For convenience, in this section, we refer to the SAT-based and BDD-

based methods as SATCLP and BDDCLP, respectively. Finally, ABC en-

ables us to analyse the area-delay results when the generated SOPs are

used to build a new multi-level circuit structure. A multi-level network
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is generated using the fx command [Rajski and Vasudevamurthy, 1992].

The network is next converted into an AIG (command strash) and opti-

mised with the dc2 command. The area and delay of the resulting AIGs

are compared for different SOP generation methods.

BenchmarksTo evaluate our algorithm, we use the ISCAS’89 benchmarks, a set of

large MCNC benchmarks, a set of nine logic tables from the instruction

decoder unit [BenchIBM], denoted as LT-DEC, and a set of proprietary

industrial benchmarks. The LT-DEC suite is well-suited to demonstrate

the factoring gains as circuit size increases [Kravets, 2015]. The names

of the LT-DEC benchmarks are given in the form “[NPI]/[NPO]”, where

NPI is the number of primary inputs and NPO is the number of primary

outputs. For the main experiments, we discard benchmarks for which

the SOP size exceeds the built-in resource limits of the used commands,

hence, we use 30 (out of 32) benchmarks from the ISCAS’89 set, 15 (out

of 20) benchmarks from the MCNC set, and 17 (out of 18) industrial

benchmarks. With the discarded benchmarks, we demonstrate the

generation of partial SOPs.

4.2.2 SAT-Based vs. BDD-Based SOP Generation

To analyse the performance and quality of results of the algorithm pre-

sented in Section 4.1, we run both SATCLP and BDDCLP available in ABC.

In this section, we present the results of these experiments.

Generating multiple
SOPs with each
method

Although the command collapse dynamically finds a good variable or-

der for the BDD, changing the initial order of the primary inputs results

in a different BDD structure, which leads to a different SOP. Hence,

to obtain a good SOP, we generate five SOPs for BDDCLP by using five

different initial orders of the primary inputs. Similarly, SATCLP gener-

ates different SOPs for different orders of the primary inputs, which

define the order of removing literals from the cubes. We either use the

pre-defined order from the benchmark file or order the inputs based

on their number of fanouts (option “Order PI”), which currently works

only for the combinational benchmarks. We can also, optionally, re-

verse the selected variable order (option “Reverse PI”). Moreover, we

can enable generation of canonical SOPs (option “Canonical”); and for

non-canonical SOPs we can enable the generation of one CNF for all

outputs as described in Section 4.1.4 (option “Shared CNF”). Thus, by

changing these four options, we generate 12 SOPs using SATCLP.
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Figure 4.4 – Difference in the size of the smallest SOP generated by each method. The size of the
smallest SOPs generated by SATCLP is compared to the size of the smallest SOP generated by BDDCLP.
Only the benchmarks for which the SOP size differs are shown. The gray line shows that, on average,
SATCLP decreases the SOP size by 2.1%.

Table 4.1 – Number of benchmarks for which activating or deactivating an option for SATCLP results in
the smallest SOP in terms of number of cubes or the best area-delay product. In total, 71 benchmarks
are used. The number of cases with the smallest SOP in terms of number of cubes is given in the
columns under “#Cubes”, and the number of cases with best area-delay product is given in the columns
under “Area·Delay”. If for one benchmark, an identical best result is obtained both when the option is
activated and deactivated, then we count it as a tie.

#Cubes Area·Delay

No Yes Tie No Yes Tie

Canonical 7 34 30 28 26 17
Shared CNF 43 1 27 40 13 18
Order PI 45 8 18 57 11 3
Reverse PI 20 15 36 28 21 22

Comparing the size of
the generated SOPs

Generating multiple SOPs with each method results in SOPs that dif-

fer in size, where the SOP size is equal to the number of cubes that

constitute the SOP. Figure 4.4 shows and compares the benchmarks for

which the size of the smallest SOP generated by each method is differ-

ent. Although SATCLP most often generates SOPs with almost the same

size as those generated by BDDCLP, for some benchmarks it generates

smaller SOPs (up to 10%). Because the results for SATCLP are obtained

using several options, as Table 4.1 shows, under “#Cubes”, the number

of benchmarks for which the smallest SOP is generated when a given
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Table 4.2 – Comparison of the number of combinational outputs in the used benchmarks and the
number of isomorphic classes. The combinational outputs are either primary outputs or latch inputs.
The number of isomorphic classes is equal to the number of calls of the SAT-based algorithm for SOP
generation.

Set
Number of

benchmarks
Combinational

outputs
Isomorphic

classes
Ratio

LT-DEC 9 788 686 87.1%
MCNC 15 3024 1435 47.5%
ISCAS’89 30 5753 1709 29.7%
Industrial 17 64267 8356 13.0%

Total 71 73832 12186 16.5%

options is deactivated or activated. We observe that, for 34 benchmarks

we obtain an exclusively smaller SOP when generating canonical SOPs,

and only for 7 benchmarks smaller are the non-canonical SOPs. Sim-

ilarly, the SOP size increases for about 60% of the benchmarks when

either the CNF is shared or the inputs are ordered by their number of

fanouts.

Setup for runtime
comparison

Next, we compare the runtimes of the algorithms. The reported runtime

is averaged over three runs of the algorithm for SOP generation. For

BDDCLP, we report the time required to execute the commands collapse

and sop. For SATCLP, we report the time taken by our command satclp,

which includes the time to generate isomorphic outputs, derive CNF,

and initialise SAT solver instances, as well as the time for all SAT calls for

minterm generation, cube expansion, and removing redundant cubes.

Runtime comparisonIn terms of scalability, in Section 4.1.4, we suggested filtering out struc-

turally isomorphic outputs. Due to this, as Table 4.2 shows, an SOP is

computed only for 16.5% of the combinational outputs, one for each

isomorphic class, and for the other outputs, we duplicate the gener-

ated SOP of the class representative. This reduces the runtime of our

algorithm SATCLP, and for benchmarks rich in isomorphic outputs,

the proposed method is significantly faster than BDDCLP. For example,

from the public benchmarks, the maximum speedup is achieved for

the benchmark s35932 from the ISCAS’89 set, for which we generate

SOPs only for 10 out of 2048 combinational outputs, hence, on average,

SATCLP requires 0.10 seconds, whereas BDDCLP requires 1.57 seconds.

Yet, on average, our SATCLP is 7.5x slower than BDDCLP for the pub-
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Table 4.3 – Runtime results for the combinational industrial benchmarks when SOPs are generated
with BDDCLP and SATCLP. The columns “PIs” and “POs” give the number of primary inputs and outputs,
respectively. A dash (-) denotes that the method fails to compute an SOP. Highlighted are the cases
when SATCLP outperforms BDDCLP.

PIs POs
Isomorphic

classes

Runtime (s)

BDDCLP
SATCLP

Non-canonical Canonical

test01 2513 2377 2083 31.14 165.99 1658.92
test02 3236 3202 3146 - 32.46 112.15
test03 1542 514 113 10.64 12.74 70.79
test04 37397 292 155 144.57 15.01 197.71
test05 1178 606 95 - 141.85 748.81
test06 1488 1446 580 4.24 31.50 137.74
test07 8087 335 270 152.42 17.91 68.31
test08 438 512 432 3.96 17.34 84.67
test09 870 1636 792 2.36 18.17 125.19
test10 2376 1233 314 100.83 10.55 46.88
test11 3875 3274 138 14.49 2.49 7.95
test12 4626 3708 112 10.29 1.59 3.17
test13 1110 1040 74 50.86 1.30 9.29
test14 8514 1323 890 - - -
test15 47356 4136 21 - 0.21 0.26
test16 58382 18433 9 - 0.63 0.28
test17 68620 17411 19 - 0.64 0.33
test18 36900 4112 3 603.86 277.08 42292.50

Average (relative to BDDCLP) 1.00 0.54 3.76

lic benchmarks. We have observed that the functions for expanding

minterms into cubes are the bottleneck. For example, for the LT-DEC

benchmarks, on average, 85% of the runtime is spent in this operation,

8% is spent on minterm generation, 2% on removing redundant cubes,

and 5% on other operations, such as dividing the outputs into classes,

generating CNF, and initialising SAT solver instances.

Runtime comparison
for the industrial

benchmarks

Conversely, from Table 4.3, we can see that SATCLP is definitely more

scalable than BDDCLP for a suite of proprietary industrial benchmarks.

First, it is most often faster than BDDCLP for the benchmarks for which

BDDCLP computes an SOP; but it also completes on most test-cases for
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which BDDCLP fails. For the non-canonical SOPs, SATCLP decreases the

runtime of SOP generation by 45.9%, on average, considering only the

benchmarks for which BDDCLP generates an SOP. For canonical SOPs,

although SATCLP is 4.3x slower than its non-canonical version and 3.8x

slower than BDDCLP, it successfully generates SOPs for 5 benchmarks, for

which BDDCLP fails. There is no benchmark for which BDDCLP computes

an SOP and SATCLP fails.

SATCLP is more
scalable because it
computes an SOP for
each output separately

The increased scalability of SATCLP is largely due to the fact that most

of the industrial testcases have hundreds of inputs and outputs, which

makes constructing global BDDs in the same manager problematic for

all outputs at once. The algorithm SATCLP does not suffer from this

limitation, because it computes the SOPs for one output at a time. It

can be argued that the BDD-based computation can also be performed

on the per-output basis. However, in this case, the BDD manager will

inevitably find different variable orders for different outputs, which will

increase the size of the resulting multi-level circuits when these SOPs

are factored. In fact, factoring benefits from computing SOP with the

same variable order that facilitates creating similar combinations of

literals in different cubes, which in turn helps improve the quality of

shared divisor extraction and factoring.

Generation of partial
SOPs

Finally, as SATCLP generates cubes progressively, unlike BDDCLP, it can

build partial SOPs even for large circuits, and these can be used for

incremental applications. Figure 4.5 shows the number of cubes that

compose the partial non-canonical SOPs when a time limit for the

runtime is set to t seconds, where t is an integer value such that 1 ≤ t ≤
10. For functions with larger supports, SATCLP usually generates less

cubes because more time is required for cube expansion. Only for the

benchmark test14, SATCLP does not generate any cube in the first six

seconds due to the large support set of the first processed output that

depends on 6246 inputs. For the other benchmarks, SATCLP generates

thousands of cubes in just a few seconds. In this experiment, SATCLP
still generates at the same time both the on-set and the off-set SOP.

However, in the incremental applications, we can generate just one of

them, which would increase the number of generated cubes for a given

time limit.
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Figure 4.5 – The number of generated cubes in the partial SOPs when the time limit is set between 1
and 10 seconds. The number of generated cubes by SATCLP depends on the size of the support set of
the output with the largest support set, which is given in brackets. For all benchmarks, the generated
cubes belong to one output.

4.2.3 Case-Study: SAT-Based SOPs for Multi-level Implemen-
tation of Circuits

Quality of results
when the SOPs are

used to generate
multi-level circuits

As explained in Section 4.2.2, several SOPs are generated with each

method. Different SOPs result in multi-level networks with different

areas and delays. As Figure 4.6 shows, for most benchmarks, our algo-

rithm obtains Pareto-optimal solutions, compared to BDDCLP. To obtain

these results, we isolate the best circuit implementations in terms of

area-delay product as derived by each method. Table 4.1, with the

columns “Area·Delay”, shows the number of benchmarks with the small-

est area-delay product generated when a given option is deactivated

and activated for SATCLP. We generate a circuit structure with a smaller

area-delay product for 26 benchmarks when generating canonical SOPs;

but for 28 benchmarks the non-canonical SOPs are a better option. Also,

for most benchmarks it is best to generate an SOP by using the original

ordering of primary inputs used in the benchmark file.
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4.3. Conclusion

Figure 4.6 – Comparison of the best circuit implementations, in terms of area-delay product, derived
by each method. For each benchmark, the best results after a multi-level description is built from the
SOPs generated by our SAT-based algorithm are compared to the ones obtained from the BDD-based
SOPs. For most benchmarks, we obtain Pareto optimal solutions.

4.3 Conclusion

Key insightsIn this chapter, we have presented a novel algorithm for progressive

generation of irredundant SOPs using heuristics based solely on SAT

solving. The LEXSAT algorithm from Chapter 3 enables the first-time

canonical SOPs generated with a SAT solver that are unique for a given

function and a variable order. Moreover, the canonicity and the pro-

gressive generation make our heuristics desirable for many applications

where minterms, cubes, or SOPs are required, and for which the exist-

ing methods are either unscalable or impractical to use. Further, in

Chapter 6, we have compared a simplified version of the proposed al-

gorithm for SOP generation to algorithms based on a resubstitution

miter [Mishchenko et al., 2011b] and interpolation when they are used

for resubstitution.
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Regarding the quality of results, we have shown that for computing a

complete SOP, on average, the SAT-based computation is as good as the

BDD-based one. Moreover, the multi-level circuit structures derived

using the SOPs generated by our approach are often better or Pareto-

optimal.

Regarding the runtime, the proposed method is somewhat slower than

the BDD-based method for most of the public benchmarks, but it is

faster for circuits that are rich in isomorphic outputs. Thus, for the

industrial benchmarks, our method is both faster and more scalable,

and therefore it is a good candidate for global circuit restructuring at

least in that particular industrial setting.

Ideas for future work Besides the described opportunities for parallelisation, the proposed

method can also benefit from the ongoing improvement in modern SAT

solvers. For example, recently we explored a new push/pop interface

for assumptions used in the incremental SAT solving, which led to

additional runtime improvements. As we show, for some circuits the

results can improve by changing the variable order in which the cubes

are expanded, but a careful study of this problem is required to improve

further the quality of results.

In addition to runtime improvements, future work can be focused on de-

veloping a dedicated SAT-based multi-output SOP computation, which

computes cubes that are shared between several outputs. A recent

publication [Kravets, 2015] indicates that a significant improvement in

quality (more than 10%) can be achieved by computing and factoring

multi-output SOPs. We are not aware of a practical method for BDD-

based multi-output SOP computation, so it is likely that a method based

on SAT solving might be the only efficient solution. Another direction

for future work is exploring the benefits of the progressive generation

of canonical minterms and cubes in different areas. One such area is

multi-level logic synthesis where incremental SAT-based decomposi-

tion methods can be developed based on partial SOPs computed for the

output functions.
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5 Constrained Interpolation for Guided
Logic Synthesis

Applying Craig
interpolation for
reimplementation of
functions

The success of the SAT-based generation of Craig interpolants in model

checking [McMillan, 2003] inspired its use in a variety of logic syn-

thesis applications [Jiang et al., 2010; Lee et al., 2008; Lin et al., 2008;

Mishchenko et al., 2011b; Tang et al., 2011]. One of these applications

reimplements a target function f as a function of a given set of base

functions G [Jiang et al., 2010], which we call standard interpolation

method for convenience. In this case, the interpolant represents the

dependency function h, such that f = h(G). In some situations, the set

G contains enough base functions to enable the existence of multiple

dependency functions whose quality mainly depends on the base func-

tions selected for the reimplementation. The interpolation is not an

optimisation problem, hence, it often omits some base functions that

might be required for an optimal implementation of the target function.

Mainly, it is impossible to impose that an interpolant uses a specific

base function.

A novel interpolation
method that imposes
the use of a specific
base function

In this chapter, we propose our third SAT-based method—a new carving

interpolation method—that overcomes this specific limitation of the

standard interpolation method. The carving interpolation can impose

a specific base function gi ∈ G as a primary input of the generated

dependency function. Such a dependency function is built as a Shannon

expansion of two constrained Craig interpolants for the assignments of

the primary inputs for which gi evaluates to 0 and 1, respectively. We

also introduce a method that iteratively imposes, one by one, a given

set of base functions. In each iteration, we impose a base function by

This chapter is based on the work of a paper published at the 2014 International
Conference on Computer Aided Design [Petkovska et al., 2014].
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generating a new dependency function that is used as a target function

for the next iteration. This new feature can be particularly useful for

some synthesis-based algorithms that reconstruct circuits.

Potential benefits for
ECO algorithms

Some synthesis-based engineering change order (ECO) algorithms [Tang

et al., 2011; Wu et al., 2010] use Craig interpolation to derive logic cir-

cuits, called patches, that correct a flawed portion of a circuit. To max-

imise the reuse of logic from the flawed implementation, the patch is

built as an interpolant that uses a set of implemented components as

the base functions. In order to build the interpolant, the standard inter-

polation method relies on the structure of the proof of unsatisfiability,

which in turn is strongly biased by the heuristics used by the SAT solver.

These heuristics are agnostic to the purposes of the ECO engine, hence

they offer no control over the selection of components that are used to

build the patch and generally do not return the best circuit structure

for it. In contrast, our carving method can overcome the deficiencies of

these heuristics and result in more compact patches, as it gives better

control of the functions to be included in the logic cone of a patch.

Potential benefits for
algorithms for global
circuit restructuring

Attempts to synthesise logic circuits by performing global restructuring

could also profit from our carving technique. Some logic optimisation

heuristics [Verma et al., 2009, 2007] reconstruct the input circuit struc-

ture by making use of small single-output circuits, called bricks, that

are found to be useful by a particular utility function. These algorithms

construct the output circuit structure gradually using sets of bricks. The

standard interpolation method is incompatible with these heuristics,

because they require the target function to be recomposed either with

some specific bricks from a set or with the complete set. Conversely, the

proposed carving technique removes this limitation. Additionally, the

original heuristic produce a functionally correct circuit only at the end

of the algorithm, whereas our carving technique produces one every

time a base function is imposed into the circuit. This feature, in addition

to offering a palette of implementations for the input circuit, can assist

in tuning the bricks’ utility function.

Overview of the
results

In this chapter, we compare our carving technique with the standard

Craig interpolation method. Our results show that the carving technique

is able to successfully include a desired base function 99% of the time,

whereas the standard interpolation method has a failure rate up to 59%.

We also study the runtime of our techniques.
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5.1. Motivating Example

The rest of the chapter is organised as follows. First, in Section 5.1, we

motivate our work with an example. Next, in Section 5.2, we describe

the standard interpolation method. In Section 5.3, we describe in detail

the proposed carving methods. Finally, we present our experimental

results in Section 5.4 and conclude in Section 5.5. The required back-

ground information is provided in Section 2.1, Section 2.3, Section 2.4,

Section 2.5, and Section 2.6.

5.1 Motivating Example

Reimplementation of
the carry function of a
2-bit adder by using
Craig interpolation

Assume we have already implemented the sum function of a 2-bit adder

s1 = a1 ⊕b1 ⊕ (a0 ·b0)

using the base functions g1 = a1 ⊕b1 and g2 = a0 ·b0 as

s1 = g1 ⊕ g2.

Next, we want to reimplement the carry function of the same 2-bit adder

c1 = (a1 ·b1)+ (a0 ·b0 · (a1 +b1))

and, for additional base functions, we have only g3 = a1 and g4 = b1. We

can now use a SAT solver and the standard Craig interpolation method

to rewrite the target function c1 by using the given set of base functions

G = {g1, g2, g3, g4}. Unfortunately, the standard interpolation method

might arbitrarily return any of the three dependency functions

h1 = (g3 · g4)+ (g2 · (g3 + g4)),

h2 = (g3 · g4)+ (g2 · (g3 ⊕ g4)), or

h3 = (g3 · g4)+ (g2 · g1).

However, having already implemented s1 as above, we might be inter-

ested in h3 that is the area-optimal solution and avoids reimplementing

existing logic. In contrast, our carving method obtains exactly h3 by

imposing g1 as a primary input.
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Figure 5.1 – The process for computing a single-output dependency function using the standard
interpolation method. The target function f (a,b) and the set of base functions G = {g1, g2} are shown
in Figure 5.1a. Figure 5.1b presents the DLN used for deriving the interpolant. The variable vector
X = (x1, . . . , x14) corresponds to the introduced CNF variables for each signal. The dashed line partitions
the gates whose clauses belong to A and B , respectively. The dots on this line depict the outputs of the
base functions whose CNF variables are common between the on-set A and the off-set B . Thus, these
outputs are candidates for the support set of the dependency function. Figure 5.1c shows the same
DLN represented as CNF clauses, which are given to a SAT solver. Figure 5.1d shows the final clauses of
the refutation proof from which the dependency function h(g1, g2) = ḡ1 · g2 is derived.

Situations qualitatively similar to this one can arise in a variety of logic

synthesis situations such as techniques for restructuring complex cir-

cuits into well-studied architectures. This example could also represent

an ECO problem, if the function s1 is implemented flawlessly and the

function c1 has to be rectified.

5.2 The Standard Interpolation Method

Generation of a
dependency function
using the standard

interpolation method

Jiang et al. [2010] suggested using interpolation to re-express a target

function as some dependency function over other base functions (also

used by Lin et al. [2009]). As previously defined, in this chapter, we

call this method the standard interpolation method. Figure 5.1b shows

the dependency logic network (DLN) required for computing the depen-

dency function h of the target function f in terms of the set of base

functions G = {g1, g2}. The DLN has similar properties as the miter

shown in Figure 2.3, and can be used for the functional dependency

check of a single-output function. Thus, if f functionally depends on

the set of base functions G , then we can represent the DLN as a set of
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CNF clauses partitioned into two sets, A and B , as suggested by Jiang

et al. [2010]. The Tseitin transformation [Tseitin, 1983] converts a cir-

cuit from combinational logic to a set of CNF clauses by introducing

new variables for each primary input and for each gate. A SAT solver is

initialised with these CNF clauses and it constrains the CNF variables

assigned to the two copies of the primary inputs of the target function.

As f functionally depends on G , the problem is UNSAT, and the SAT

solver returns a proof of unsatisfiability, which is also called refutation

proof as defined in Section 2.3. This refutation proof is used to com-

pute the interpolant. As the CNF variables of the outputs of one copy

of the base functions belong both to the on-set A and to the off-set

B , these outputs represent candidate inputs for the support set of the

interpolant and, implicatively, for the dependency function. Figure 5.1

shows the process for computing the dependency function with this

standard interpolation method.

5.3 The Carving Interpolation Method

In this section, we first explain the deficiency of the standard inter-

polation method. Next, we present in detail the proposed carving in-

terpolation method for both a single base function and a set of base

functions.

5.3.1 Deficiency of the Standard Interpolation Method

Reason for omitting
some base functions

A base function belongs to the support set of the dependency function

if and only if its clauses are part of the refutation proof. All essential

base functions belong to the support set, because their clauses are re-

quired for building a refutation proof. However, whether an auxiliary

base function belongs to the support set depends on the selection of

the SAT solver. As the SAT solver neglects the importance of a base

function when building the refutation proof, the standard interpola-

tion method often omits base functions that enable a specific efficient

implementation of the target function.

Illustrating the
problem with an
application

In contrast, some techniques require either some specific or all selected

base functions to be used as primary inputs of the dependency function.

For instance, Verma et al. [2009] propose an algorithm that optimises

a circuit by iteratively generating and selecting a set of base functions.
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After the first iteration, it uses the dependency function to generate

a new set of base functions. Thus, if a base function is disconnected

from the dependency function, it is then discarded, although it was

previously selected as adequate and desirable for reconstructing the

circuit. Therefore, this behaviour of the standard interpolation method

hinders its applicability to such logic synthesis techniques.

5.3.2 Carving Out a Base Function

In this section, we describe in detail the carving interpolation method for

imposing the use of a single base function: it constructs a dependency

function as a Shannon expansion of two constrained Craig interpolants.

Cofactoring the set of
CNF clauses

Assume we have a target function that functionally depends on a set

of base functions from which we want to impose the use of a selected

base function. For the carving interpolation method, we construct

the same DLN as for the standard interpolation method and represent

it as a set of CNF clauses. Assume the CNF clauses are expressed in

terms of the variable vector X = (x1, . . . , xn). We denote this set of CNF

clauses as C (x1, . . . , xn). The unsatisfiability of the SAT problem defined

with the DLN signifies that the set of CNF clauses is UNSAT for any

assignment of X . From this, it follows that both C x̄i =C (x1, . . . ,0, . . . , xn)

and Cxi =C (x1, . . . ,1, . . . , xn), in which we have assigned the variable xi

to 0 and 1, respectively, are also UNSAT for any assignments of X . A

CNF variable is assigned to a constant value by extending the existing

set of CNF clauses with a single-variable clause xi or x̄i , which makes

an assumption that the variable xi evaluates to 1 or 0, respectively.

Constructing an
interpolant as a

Shannon expansion of
two constrained

interpolants

Using the refutation proofs for C x̄i and Cxi , we can construct two con-

strained interpolants I x̄i and Ixi , respectively. These two interpolants

represent the cofactors of a feasible interpolant I for the satisfiability

problem expressed with the set of clauses C (x1, . . . , xn), with respect to

xi . Thus, using the formula for Shannon expansion, we can generate

the interpolant I as

I = x̄i · I x̄i +xi · Ixi .

Constructing an
interpolant that

imposes the use of a
single base function

In order to impose a selected base function gi , we perform the Shannon

expansion with respect to the CNF variable xi assigned to the output

of the function gi . When we assign the variable xi to 0, we evaluate
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Figure 5.2 – The process for imposing the first base function g1 from a set of base functions G =
{g1, g2, g3}. After a base function is imposed, it is substituted with an identity function in the set G. To
impose the second function g2, the carving method is given the last computed interpolant h1 and the
modified set of base functions G1.

all assignments for which the function gi evaluates to 0. At the same

time, for the assignments for which gi evaluates to 1, there is a conflict

with the assumed value of the output of gi ; and the problem is UN-

SAT. Similarly, the dual case applies for the assignments for which gi

evaluates to 1. Thus, the two interpolants, built for the assignments for

which the selected base function gi evaluates to 0 and 1, respectively,

represent the negative and the positive cofactors of the dependency

function with respect to xi , and they can be used to obtain the final

dependency function with Shannon expansion.

5.3.3 Carving Out a Set of Base Functions

Iteratively carving out
a set of base functions
one by one

Given a set of base functions G = {g1, . . . , gn}, such that the target func-

tion f functionally depends on G , the base functions are iteratively

carved out one by one. To carve out the first base function g1, we use

the function f and the set G . As a result, we receive a dependency

function h′
1 that has the imposed base function g1 and a subset of the

remaining base functions from G as primary inputs. To retain g1 as a

primary input, after carving it out, we modify G to G1 by substituting g1

with an identity function that propagates the input as an output. To be

able to impose the remaining base functions, we construct a function

h1 by adding the logic of the non-imposed base functions to the func-

tion h′
1. In the next iterations, to impose the base function gi , where

i = 2, . . . ,n, we use the dependency function hi−1 and the modified

set of base functions Gi−1. Figure 5.2 shows the first iteration of our

method when imposing a set of base functions G = {g1, g2, g3} given a

target function f .
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(a) Carving the base functions one by one.
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(b) Carving multiple base functions simultaneously.

Figure 5.3 – Difference between carving multiple base functions one by one and simultaneously. To
carve out n base functions successively, we need to compute only 2n interpolants. Whereas, to carve
them out simultaneously, we must compute 2n interpolants.

Idea for improving the
runtime by carving

out only auxiliary base
functions

Carving a set of base functions by our method is usually much slower

than by the standard interpolation method, because our method builds

two interpolants per base function, whereas the standard method gen-

erates only one interpolant per set of base functions. Accordingly, as we

know that the standard interpolation method always uses the essential

base functions, we propose an optimised carving method that improves

the runtime by generating a single interpolant for all essential base

functions. Furthermore, it increases the success rate for imposing the

set of base functions, because it prioritises the auxiliary base functions

and carves them out when all or most of the circuit’s logic is available.

Optimised carving
method for a set of

base functions

The optimised carving method starts with partitioning the set G into

two subsets, Ge and Ga , that contain the essential and auxiliary base
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functions, respectively. Then, we first carve out the base functions

from the set Ga , which might be omitted by the standard interpolation

method, as explained in Section 5.3.1. Assuming that the set Ga contains

i base functions, once all functions are carved out, we constructed the

function hi and modified the set G to Gi . The set Gi contains (1) identity

base functions for the functions from Ga and (2) all functions from Ge .

Finally, the standard interpolation method is used to construct the

resulting dependency function by re-expressing the function hi as a

function from the set Gi .

Example 5.3.1. For the target function f and the set G from Figure 5.2,

we first impose the function g2 ∈Ga and obtain the function h1 instead

of first imposing the function g1 as shown for the basic carving method.

Next, instead of imposing the functions from Ge = {g1, g3}, we generate

the final dependency function with the standard interpolation method

given the function h1 as a target function and the set G1 = {g1, g2i d , g3},

where g2i d is the identity function introduced for g2.

Carving out multiple
base functions
simultaneously

Shannon expansion can also be performed on multiple variables. Thus,

in one iteration, multiple base functions can be simultaneously carved

out of the target function. However, as Figure 5.3 shows, due to the na-

ture of the Shannon expansion, the number of interpolants grows expo-

nentially with the number of base functions carved out simultaneously,

in contrast with the linear growth of the one-by-one single-function

carving.

5.4 Experimental Results

In this section, we introduce our experimental setup and we present

the experimental results that compare our carving methods with the

standard interpolation method.

5.4.1 Experimental Setup

Integration of the
algorithms in ABC

We implemented both the basic and the optimised carving interpola-

tion methods as commands in ABC [ABC]. An advantage of using ABC

is that the integrated SAT solver, which is based on an early version of

MiniSAT [Eén and Sörensson, 2003], provides a proof of unsatisfiability

for UNSAT problems. ABC also provides an implementation of an algo-
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rithm that generates a Craig interpolant from a proof of unsatisfiability

as an AIG.

Inspiration from
Iterative Layering for

the experimental
setup

Although the carving technique is general and not tied to any purpose or

logic synthesis heuristic, our experimental setup is somewhat inspired

from the Iterative Layering technique proposed by Verma et al. [2009].

This heuristic restructures a circuit by gradually imposing a set of pre-

selected base functions. Reimplementing the whole algorithm is not

our purpose here, but we want to explore interpolation as the means to

progressively transform the original circuit into an optimised one (note

that the original implementation of Iterative Layering does not use SAT

solvers and follows a different strategy). Hence, in our experiments, we

use an oracle that gradually provides the base functions for composing

the optimal circuit structure.

Experimental setup To ABC, we provide an input implementation and a final implemen-

tation of the circuit we want to optimise. The final implementation

is either a desirable known implementation of the circuit or the input

implementation optimised in ABC. It serves as a reference goal from

which an oracle computes the set of base functions for reconstructing

the circuit. In our case, this set consists of the logic functions of non-

overlapping k-input cuts which cover the whole circuit. With this setup,

we show that we can recompose any input implementation to any final

implementation, as long as we have the adequate base functions. Two

scenarios are presented: In the first, we carve out only a single base

function, as described in Section 5.3.2; in the second, we carve out a

complete set of base functions, as described in Section 5.3.3.

Benchmarks For our experiments, we use 10 large combinational MCNC benchmarks

and a set of 35 arithmetic circuits, including adders, leading zero de-

tectors, multipliers and majority functions. When the benchmark is a

multi-output circuit, we process each output separately, as the interpo-

lation methods can process only a single output at a time. The following

subsections describe the results in detail.

5.4.2 Imposing a Single Base Function

For the following experiment, the oracle provides the complete set of

base functions G ; and, for each gi ∈ G , we would like to construct a

dependency function that has the function gi in its support set.
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Figure 5.4 – The setup for imposing the base function g1 using the carving method. The base functions
are always expressed as functions of the primary inputs, thus the selected base function is accompanied
with the essential identity functions of the target function’s primary inputs a, b, and c. After deriving
the dependency function h1, we test if g1 is used as a primary input.

Table 5.1 – Failure rates of the interpolation methods for a single base function. The given numbers
represent percentage of disconnected wanted base functions.

Standard Carving

Arithmetic Circuits 55.71% 0.00%
Large MCNC (area-optimised) 59.12% 0.15%
Large MCNC (delay-optimised) 56.40% 0.15%

Experimental setup
for imposing a single
base function

In order to create a dependency function, the target function f should

functionally depend on the given set of base functions. Hence, to im-

pose a single base function gi , we first form a set Gi that contains the

function gi and all identity functions of the primary inputs of the target

function. Next, we remove the added identity functions that are aux-

iliary given the function f and the set Gi . Thus, Gi contains only the

identity functions of the primary inputs that are essential for achieving

functional dependency and the function gi . If a removed identity func-

tion represents a primary input that is also a primary input of gi , both

the standard and the carving method must use gi to recreate the target

function. Otherwise, if the identity functions of all primary inputs of

gi are given, then several dependency functions exist—some that use

the function gi , and others that reimplement the logic of gi with the

identity functions from Gi . Figure 5.4 shows the setup for imposing the

base function g1 with the carving method.

Failure rates in terms
of omitted base
functions

In our experiment, when it is possible to return a dependency function

that omits the selected base function, we count the number of missed

opportunities to use the base function for the two interpolation meth-

ods. Table 5.1 summarises the failure rates of the interpolation methods.
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(b) Area-optimised MCNC benchmarks.

Figure 5.5 – The relative execution time to generate a dependency function for a base function set
composed of a single base function and essential identity functions.

For the arithmetic circuits, the standard interpolation method fails to

use the selected base function in 55.71% of the cases, whereas the carv-

ing method always imposes it. For the MCNC benchmarks, when the

input structure of the circuits is optimised for area, we observe 59.12%

and 0.15% failure rate for the standard method and the carving method,

respectively. Similarly, when the input structure is optimised for delay,

we obtain 56.40% and 0.15% failure rate, respectively.

Runtime comparison Regarding the runtime of the two methods, as expected, the carving

method takes on average twice the time required by the standard inter-

polation method, because the dependency function is derived from two

interpolants instead of one. Figure 5.5 shows the distribution of the rel-

ative execution time for the arithmetic circuits and the area-optimised

MCNC benchmarks.

5.4.3 Imposing a Set of Base Functions

Experimental setup
for imposing a set of

base function

For the following experiment, the oracle provides the complete set of

base functions partitioned into subsets, called layers, on which the input
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Figure 5.6 – Non-overlapping 3-input cuts and the formed layers for the most significant bit of a 4-bit
adder. The rounded sets represent the 3-input cuts whose logic functions are the base functions. The
dashed lines divide the cuts in layers. The small ovals show the signals for which an identity function is
introduced because they are primary inputs to base functions from a higher layer.

circuit functionally depends. Each layer contains base functions that

have only outputs of the previously composed layers as primary inputs.

An identity function is introduced for each base function propagated

through the layer. Figure 5.6 presents one possible solution for the cuts

and layers for the most significant bit of a 4-bit adder. If all the base

functions from a layer are essential base functions, then all of them are

always used by the standard interpolation method and there is no need

to use the carving method. However, if there is at least one auxiliary

base function that might be omitted, we consider as failure each layer

from which at least one base function was not included in the support

set of the built dependency function.

Short description of
the compared
methods

In Section 5.3.3, we presented two carving methods: the basic carving

method that imposes all functions from a given set successively, and

the optimised carving method that first imposes the auxiliary functions

and then generates the final dependency function using the standard

interpolation method presented in Section 5.2. To compare these with

the standard interpolation method, we generate one dependency func-

tion by using each of the three methods for each layer received from the

oracle. To show the gradual reconstruction of the circuit when using
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(b) Delay comparison of the standard interpolation and the optimised carving method.

Figure 5.7 – Area and delay of the MSB of a 14-bit adder, reconstructed using 10 layers. The area
is expressed in terms of number of AND gates, and the delay is expressed as number of levels of
the AIG. For each layer, Figure 5.7a shows the cumulative area of the base functions and the area of
the dependency function built with the standard method and with the optimised carving method,
respectively. Figure 5.7b compares the delay of the same circuits. In layers 2 and 3, the optimised
carving method offers a solution that has lower delay and equal area as the final reference circuit from
layer 10, which was obtained by optimising the input circuit from layer 0 in ABC.

layers, Figure 5.7 highlights the area and delay of the recomposed cir-

cuit of the MSB of a 14-bit adder after the dependency function is built

for each of the 10 layers. For each layer, we verified that the resultant

implementation is functionally equivalent to the target function given

as input.

Failure rates in terms
of layers with at least

one omitted base
function

The failure rates of the different interpolation methods are summarised

in Table 5.2. For the arithmetic circuits, at least one base function from

the layer is omitted for 74.59% of the layers, when the dependency func-

tion is constructed by the standard interpolation method. In contrast,

the basic and the optimised carving method fail to use at least one base

function for only 0.26% and 0.07% of the layers, respectively. Although

we expected similar results for the MCNC benchmarks, when the input
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Table 5.2 – Failure rates of the interpolation methods for a set of base functions.

Layers with at least Disconnected base
one omitted base function functions among all layers

Carving Carving

Standard Basic Optim. Standard Basic Optim.

Arithmetic Circuits 74.59% 0.26% 0.07% 64.02% 0.17% 0.04%
Large MCNC (area) 81.82% 83.33% 54.55% 34.00% 26.55% 19.85%
Large MCNC (delay) 92.89% 83.76% 76.14% 77.56% 34.30% 30.77%

structure of the circuits is optimised for area, we obtain 81.82% failure

rate for the standard method, whereas for the base and the optimised

carving method, the failure rates are 83.33% and 54.55%, respectively.

For the same benchmarks, when the input structure is optimised for

delay, the failure rates are 92.89% for the standard interpolation method,

and 83.76% and 76.14% for the standard and optimised carving method,

respectively. These failure rates occur because we consider a failed layer

as soon as a single base function is disconnected. For instance, for a

given layer, even if the standard method omitted five functions and the

carving method has omitted only one, we determine that both methods

have failed.

Failure rates in terms
of omitted base
function among all
layers

Therefore, we also analysed the number of disconnected base functions

among all layers. The most substantial difference is observed for the

large delay-optimised MCNC benchmarks, for which the standard in-

terpolation method omits 77.56%, whereas the standard carving and

the optimised carving methods omit only 34.30% and 30.77% of the

base functions among all layers, respectively. The results for the other

benchmarks are presented in Table 5.2. As Figure 5.8 shows, the carving

methods usually have lower failure rates than the standard interpolation

method, and fail only for circuits for which the standard interpolation

method fails.

Runtime comparisonThe basic carving interpolation method builds two interpolants for each

base function of the layer, whereas the standard interpolation method

constructs one interpolant per layer. Thus, the runtime of the first is,

in most cases, significantly higher than the one of the second. Due

to the extensive runtime, we fail to execute the algorithm for all the
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Figure 5.8 – The percentage of disconnected base functions among all layers for the three methods.
For the presented benchmarks, the base functions are generated using 5-input cuts for the arithmetic
circuits, and using 3- and 8-input cuts for the large combinational delay-optimised MCNC benchmarks.
From the MCNC benchmarks, we were able to process at least one output within the given timeout only
for the shown benchmark circuits. The formatting of the benchmarks shows their name, the number of
primary inputs and outputs, as well as the number of processed outputs for which we report results.
For example, the last arithmetic circuit, rca64, has 128 primary inputs and 65 primary outputs, but we
processed only the first 12 outputs.

outputs for 28% of the larger MCNC benchmarks. But, for the smaller

MCNC benchmarks and the arithmetic circuits, we fail to complete the

algorithm for only 2% and 4% of the circuits, respectively. Figure 5.9
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(a) The basic carving method is almost always slower than the standard interpolation method, because
it computes two interpolants per base function instead of one for the whole set.
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(b) The optimised carving method improves over the basic carving method because it computes one
interpolant for the essential base functions.

Figure 5.9 – Comparison of the execution time of the interpolation methods when generating a depen-
dency function for a set of base functions. The presented execution time of the carving methods is
relative to the execution time of the standard interpolation method.

shows the distribution of the relative execution time for the arithmetic

circuits. Although the optimised carving method spends some time

dividing the base functions into auxiliary and essential functions, it is

generally much faster than the basic carving method. Also, as expected,

it succeeds more often in imposing the base functions, as it gives a

priority to those that might be omitted.

5.5 Conclusions

Key insightsIn this chapter, we have presented a new technique for enabling the

reimplementation of an input circuit while imposing a given subcircuit

or base function. Our results show that the proposed carving technique

is able to successfully include the desired base functions most of the

time—it has more than a 99% success rate when forcing a single base

function. In comparison, the reference technique, which is based on

Craig interpolation, fails far more often. For instance, the success rate of
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the standard interpolation method for the large area-optimised MCNC

benchmarks barely reaches 40%. Our results also show that our carving

technique is moderately slower than the standard interpolation method

when forcing a whole set of base functions, but takes only about twice

the time when forcing a single base function. This is mostly because

the carving technique requires more SAT solver calls and spends more

time on reimplementation than the reference technique. To impose

a set of base functions, we have also proposed an optimised carving

method that represents a hybrid of the basic carving method and the

standard interpolation method. This method offers the best failure

rate and significantly improves the runtime required for carving, but it

is still slower than the standard interpolation method. Consequently,

heuristics for global circuit restructuring, as well as synthesis-based ECO

algorithms, can benefit from our carving technique when optimising

circuits of limited size.

The interpolation method has also been proposed for generating a

dependency function during resubstitution. Next, in Chapter 6, we

compare a methodology based on (1) a miter similar to the DLN de-

scribed in Section 5.2 and (2) interpolation to a methodology based on

cube enumeration when they are used for resubstitution.
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6 Comparison of SAT-Based Algorithms
for Resubstitution

Resubstitution in
different logic
synthesis algorithms

In logic synthesis, resubstitution is the problem of replacing a function

of a given target node from a Boolean network by using a function that

depends on other nodes, called divisors, without altering the global

functionality of the target node [Brayton et al., 1987]. The new imple-

mentation of the target node, called a resubstitution function, should

have better quality compared to the original implementation; for ex-

ample, in terms of area or delay, which is determined by the optimisa-

tion criteria. Many algorithms for multi-level logic optimisation use

some kind of resubstitution. For example, it is a part of algorithms for

logic optimisation and resynthesis [Mishchenko et al., 2011b, 2017]

that can be both technology-independent and technology-dependent,

provided that the optimisation is performed before or after the technol-

ogy mapping, respectively. Also, as we mentioned in Chapter 5, some

logic optimisation heuristics for global restructuring [Verma et al., 2009,

2007] build a new implementation for a given circuit by using small

single-output circuits as divisors; and some synthesis-based ECO algo-

rithms [Tang et al., 2011; Wu et al., 2010] derive patches, which replace

an incorrect subcircuit, as a resubstitution function, but they relax the

condition for preserving the global functionality of the network in order

to correct the design.

Resubstitution is more
general than rewriting

Some fast technology-independent algorithms for rewriting minimise

an AIG by iteratively resubstituting cuts of the network [Bertacco and

Damiani, 1997; Mishchenko et al., 2006a; Yang et al., 2012]. Each cut is

replaced with its best implementation, obtained from a pre-computed

library of functions. However, in this case, pre-computed functions can

be used because the selected function from the library uses exactly the
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Figure 6.1 – Typical flow of a resubstitution algorithm. The algorithm receives as input the original
network and a target node from it, and returns the resubstitution function for the function of the
target node. The four main methods are given in boxes with different colours: (1) for obtaining a set of
candidate divisors, (2) for checking the feasibility of a given set of divisors, (3) for minimising the set of
divisors, and 4) for generating a resubstitution function.

same inputs as the original implementation. In contrast, resubstitution

is a more general problem because the resubstitution function can have

inputs different than the original one.

Methods required for
resubstitution

The standard flow of an algorithm for resubstitution of a given node is

illustrated in Figure 6.1. This flow consists of the following steps, each of

which can be implemented as a separate method. The flow starts by ob-

taining candidate divisors for the resubstitution of the given node. The

candidate divisors are either generated as new nodes in the network,

or selected from the existing ones. We have to ensure that the set of

candidate divisors is feasible for implementing the target node, which

means that the function of the target node can be implemented as a

function of the given set. However, this initial set of candidates might be

large and might include redundant divisors. Therefore, it is minimised

and only a subset of it is selected for implementing the resubstitution

function. Each divisor from the minimised set of candidate divisors will

be an input to the resubstitution function, hence frequently a smaller

set leads to a better implementation. Similarly to before, the minimised

set has to be feasible for resubstitution. If the set is feasible, then a re-

substitution function is generated. Otherwise, a different subset should

be selected from the initial set.

Side-to-side
comparison of two

SAT-based
methodologies

In this chapter, we compare two methodologies for implementing all

the methods required for resubstitution, except the one for obtaining

the initial set of candidate divisors. The algorithms from both com-

pared methodologies receive as input a set of candidate divisors that

they minimise while performing a feasibility check, and they generate

a resubstitution function at the end. Both algorithms were introduced

as building blocks of different SAT-based algorithms for post-mapping
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logic optimisation and resynthesis. Additionally, we propose and com-

pare an enhancement for one of them.

Short description of
the two compared
methodologies

The algorithms from the first methodology [Mishchenko et al., 2011b]

perform minimisation and feasibility checking using a resubstitution

miter, which is a simplified version of the functional dependency miter;

and they generate the resubstitution function using the standard inter-

polation algorithm presented in Chapter 5. However, instead of using

simulation for selecting a small feasible subset of divisors, as suggested

by Mishchenko et al. [2011; 2006], we propose an efficient algorithm

that minimises the set of candidate divisors using a resubstitution miter.

The second methodology is based on cube enumeration [Mishchenko

et al., 2017], and its algorithm is similar to the one for SAT-based SOP

generation presented in Chapter 4. We discussed [Mishchenko et al.,

2017] that an algorithm based on a resubstitution miter is faster than

an algorithm based on cube enumeration when the set of divisors has

more than 10 divisors, but it is slower for smaller sets due to using inter-

polation. The algorithm based on cube enumeration has an advantage

for smaller sets of divisors because it derives the resubstitution function

for a node as a by-product of the feasibility check. However, to the

best of our knowledge, there is no side-by-side numerical and detailed

comparison of them such as the one that this chapter provides.

The remainder of this chapter is organised as follows. In Section 6.1,

we describe an algorithm for post-mapping optimisation that is used

both as a motivation, and to compare the algorithms in Section 6.3 in

which we provide the experimental setup and results. In Section 6.2,

we describe the algorithms of the two methodologies for resubstitution.

We conclude and present ideas for future work in Section 6.4. The

required background information is provided in Section 2.1, Section 2.3,

Section 2.4, and Section 2.5.

6.1 Technology Mapping as Motivation

Post-mapping
framework for
SAT-based logic
optimisation

From all applications of resubstitution, we use technology mapping to

show the importance of resubstitution and to compare the two method-

ologies. The methodology based on cube enumeration was introduced

as a part of a post-mapping framework for SAT-based logic optimisa-

tion with don’t-cares that reduces delay and area of the initial map-
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SAT-based synthesis 
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Initial LUT netlist
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Figure 6.2 – Overview of the framework for SAT-based logic optimisation. The compared SAT-
based algorithms are part of the methods in the coloured boxes used iteratively for each critical
node [Mishchenko et al., 2017]. They select a minimal feasible set of candidate divisors, and compute
the configuration for a k-input LUT when the number of selected divisors is less than or equal to k.

ping [Mishchenko et al., 2017]. Figure 6.2 illustrates the connection

between the main methods of the framework. For input, the framework

receives an initial mapping as a LUT netlist, from which the area-critical

or delay-critical nodes are selected. Then, it iterates through these

nodes by prioritising those that can gain most from the optimisation.

For each node, it executes the following four methods for optimisation.

First, a structural window of the node is computed: It contains (1) a

fixed number of TFI/TFO levels of logic centered at the node, and (2) all

paths from the included TFIs to the included TFOs. The left subcircuit

from Figure 6.4 illustrates this window for a given target node n. Next,

from the nodes included in the window, a set of nodes is selected for

candidate divisors. The set is minimised by selecting a feasible subset

of candidate divisors, which would represent the support of the resub-

stitution function, or it is proved that no feasible subset exists. Last, if

the minimised subset is feasible and if it contains at most k divisors,

the target node can be reimplemented using one k-input LUT, and

its configuration is obtained by generating a resubstitution function.

Otherwise, if the number of divisors is larger than k, the resubstitution

function is generated as a LUT-structure composed of k-input LUTs

that is synthesised using an algorithm based on quantified Boolean for-

mula (QBF) solving. Finally, either after iteratively processing all critical

nodes, or if a timeout occurs, the final restructured netlist of LUTs is
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generated and returned, and it has either equal or better quality than

the initial LUT netlist.

The framework can be
easily extended to
other technologies

This framework is introduced as part of a set of logic synthesis tools

for FPGAs, so the initial and resulting mapping are represented as LUT

netlist. However, it can be easily extended to other technologies, such

as standard cells, technology-independent AIGs, and logic structures

composed of known primitives. To achieve this, only the last method

from the iterative process, which performs the LUT-structure synthesis,

should be replaced with another implementation for the appropriate

technology [Mishchenko et al., 2016, 2015].

6.2 SAT-Based Algorithms for Resubstitution

In this section, first, we give the necessary and sufficient condition for

the existence of resubstitution that is used by both compared method-

ologies. Then we describe algorithms based on the two methodologies

for resubstitution that are compared in this chapter.

Necessary and
sufficient condition for
the existence of
resubstitution

For the feasibility check, both methodologies use the following theorem

for sets of pairs of functions to be distinguished (SPFD) [Mishchenko

et al., 2006c], which is similar to Theorem 1 for functional dependency.

It provides a necessary and sufficient condition for the feasibility of

resubstitution.

Theorem 4. Let X be a set of variables X = {x1, . . . , xm}. The set of

divisors D = {d1,d2, . . . ,dk } with functions G = {g1(X ), g2(X ), . . . , gk (X )}

is feasible for resubstitution of a target node n with function f (X ) if and

only if there is no minterm pair (M1, M2) such that f (M1) 6= f (M2) but

gi (M1) = gi (M2) for all i , where 1 ≤ i ≤ k [Mishchenko et al., 2006c].

In short, a set of candidate divisors is infeasible if it does not distinguish

two minterms that a target node distinguishes.

6.2.1 Resubstitution Using a Resubstitution Miter and
Interpolation

Link between
feasibility of a
resubstitution and
functional dependency

The similarity between Theorem 1 and Theorem 4 shows that the feasi-

bility of a resubstitution is closely related to the concept of functional

dependency presented in Section 2.4. Indeed, the functions of the tar-
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Figure 6.3 – The resubstitution miter. It can be used both for feasibility checking and minimisation of
the set of candidate divisors, as well as for computing an interpolant.

get node and divisors, and the resubstitution function in resubstitution

represent precisely the target function, base functions, and dependency

function, respectively, in functional dependency. Consequently, a ver-

sion of the miter for checking of functional dependency can be used as

a resubstitution miter for feasibility checking, and interpolation can be

used to generate the resubstitution function [Mishchenko et al., 2011b]

similarly to how they are used in Chapter 5.

Structure of the
resubstitution miter

Subsequently, the first compared methodology is based on the resubsti-

tution miter introduced in an integrated SAT-based logic optimisation

methodology [Mishchenko et al., 2011b]. In this chapter, we propose

a more flexible version of it, which is illustrated on Figure 6.3. It only

differs in the comparison logic—instead of using XOR gates connected

with an OR gate with output assigned to 0, we propose to use XNOR

gates with outputs assigned to 1. For a set with k divisors, the original

comparison logic represents the equation

(g1l ⊕ g1r )+·· ·+ (gkl ⊕ gkr ) = 0,

where gi l and gi r , for 1 ≤ i ≤ k, are the gi functions from the left and

right subcircuit, respectively. If we negate both sides of this equation,

we would obtain the proposed version

(g1l ⊕ g1r ) · · · · · (gkl ⊕ gkr ) = 1.
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Consequently, the function of the proposed miter is the same as the

original one, but the independence of the XNOR gates brings flexibility

when minimising the set of candidate divisors by using incremental SAT

solving with assumptions. Also, this miter has the same functionality

as the miter for functional dependency checking from Figure 2.3, but

it is simplified because it works only for a single-output function f (X ).

Similarly to the functional dependency miter, it consists of two copies

of the function f (X ) for the target node n, and of the functions gi (X ),

where 1 ≤ i ≤ k, for the divisors di . However, additionally, this resubsti-

tution miter considers the care set represented with the logic function

Cn(X ), which is illustrated in Figure 6.4 and explained in Section 6.2.2.

The output of Cn(X ) is assumed to be 1 in order to assign X1 and X2

only to care-set minterms of n, and to ignore the don’t-care ones.

Auxiliary and essential
divisors

Similarly to how we defined essential and auxiliary base functions in

Section 2.4, we define essential and auxiliary divisors. A divisor gi ∈G

is essential, if the feasible set G becomes infeasible when gi is removed

from it. Otherwise, gi is auxiliary, and both G and G \ {gi } are feasible

sets.

Feasibility checking
using a resubstitution
miter

A SAT solver initialised with a resubstitution miter can check if a set of

divisors D = {d1,d2, . . . ,dk } is feasible to resubstitute the given function

f (X ) of the target node n. If the problem is satisfiable, then the set

D is infeasible because the satisfying assignment of the variables X1

and X2 defines two minterms M1 and M2 that are distinguished by

the target node n but are not distinguished by any of the divisors di .

Otherwise, if the problem is UNSAT, the set D is feasible because such

pair of minterms does not exist, and the resubstitution is possible.

Fast minimisation
based on a
resubstitution miter
using a single SAT call

For minimising the set of divisors, we consider the following three op-

tions. First, when the problem representing the resubstitution miter is

UNSAT, the SAT solver returns the set of literals for UNSAT. Thus, the

divisors for which the literal is returned define a feasible subset of divi-

sors. However, this feasible subset is not always minimum with respect

to the included divisors, hence often redundant divisors can be addi-

tionally removed. Moreover, the removal for some divisors can prevent

obtaining the global minimum, as illustrated with the Example 6.2.1.

The advantage of this algorithm, which in this chapter we call MITER0,

is that it minimises the initial set with a single SAT call.
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Example 6.2.1. Let X = {x1, x2, x3, x4, x5} be a set of variables. Two dif-

ferent resubstitution functions can be obtained for the target func-

tion f (X ) = (x1 ⊕ x2)(x3 + x4) with respect to the set of divisors D =
{d1,d2,d3,d4} with functions g1(X ) = x1 ⊕ x2, g2(X ) = x1 + x2, g3(X ) =
x1x2, and g4(X ) = x3 + x4. The best implementation with two divi-

sors is f (X ) = g1(X )g4(X ). But, if the divisor d1 is removed first, then

the set is still feasible and the target function can be implemented as

f (X ) = g2(X )ḡ3(X )g4(X ).

Minimisation using
assumptions and one
round of SAT solving

Another option for minimisation is to use incremental SAT solving with

assumptions for the XNOR variables, which represent the SAT variables

of the XNOR gates outputs from the resubstitution miter. A divisor is

used if its corresponding XNOR variable is assumed 1; otherwise, it is

not used. The simplest iterative solution, which we call MITER1, is to

try to remove greedily the divisors one by one. Assume that the set of

candidate divisors D initially contains k divisors, D = {d1,d2, . . . ,dk }. In

iteration i , where 0 ≤ i ≤ k − 1, we try to remove the divisor dk−i by

assuming the XNOR variables of all divisors to 1, excluding the ones

for dk−i and the divisors that are removed in the previous iterations j ,

where 0 ≤ j < i . The SAT problem with the given assumptions is UNSAT

when the divisor can be removed, and we can additionally use the set of

assumptions for UNSAT to remove other redundant divisors and to re-

duce the number of SAT calls. Otherwise, the SAT problem is satisfiable

when the divisor is essential. This heuristic performs one round of SAT

solving with at most k SAT calls, when the initial set contains k divisors.

Unlike MITER0, MITER1 ensures that all divisors in the final minimised

set are essential. However, we still might encounter the problem from

Example 6.2.1 if the divisor d1 is removed before the divisors d2 and d3.

Efficient minimisation
using assumptions and

two rounds of SAT
solving

Therefore, to obtain a set that is equal or close to the global minimum,

we propose the algorithm MITER2 that performs two rounds of SAT

solving. In the first round, when we have k divisors, one SAT call with

k −1 assumptions is performed for each divisor. In iteration i , we check

if the divisor dk−i can be removed, which means that all XNOR variables

are assumed to 1 except the one for the divisor dk−i . If the problem is

UNSAT, we mark the divisor as auxiliary and we obtain the subset of

divisors additionally removed using the set of assumptions for UNSAT.

With this round, we retrieve the option that has the highest chance of

resulting in the smallest possible subset. Then, in the second round,

we consider as removed the subset of divisors that is defined with the
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best option from the first round, and we iteratively try to remove the

remained divisors that were marked as auxiliary in the first round. This

algorithm has linear complexity in the number of candidate divisors

because it performs at most two SAT calls for each divisor.

Example 6.2.2. Assume the target node n with function f (X ) and the

set of divisors D from Example 6.2.1. In the first round we would obtain

the following results in the given iterations.

Iteration 1) The divisor g1 is auxiliary, and when it is removed the

other divisors become essential. Hence, we can remove

in total one divisor.

Iteration 2) The divisor g2 is auxiliary, and we can remove in total

two divisors, g2 and g3.

Iteration 3) The divisor g3 is auxiliary, and we can remove in total

two divisors, g2 and g3.

Iteration 4) The divisor g4 is essential.

Iterations 2 and 3 lead to the same best result—g2 and g3 can be re-

moved simultaneously, and the minimised set would be D ′ = {g1, g4}.

As we do not know if the set is minimal, in the second round we would

try to remove g1: it is the only divisor from D ′ that was auxiliary in the

set D . However, it cannot be removed, because it is an essential divisor

in D ′.

Generation of the
resubstitution function
using interpolation

The proposed algorithms for minimisation MITER1 and MITER2 provide

a minimal set of divisors in which all divisors are essential—if a divisor is

removed, then the set becomes infeasible. Thus, there is no need to use

carving interpolation to generate the resubstitution function. Instead,

we use the standard Craig interpolation, as described in Section 5.2. In

this case, to derive the interpolant, we use the proof of unsatisfiability

from a SAT solver initialised with the resubstitution miter that has an

identical functionality as the DLN from Figure 5.1. In this chapter, for

brevity, we call this algorithm INTER.

6.2.2 Resubstitution Based on Cube Enumeration

Miter used for cube
enumeration

The algorithm based on cube enumeration is proposed as part of the

framework for SAT-based logic optimisation [Mishchenko et al., 2017],

which is described in Section 6.1. It receives as input the miter from

Figure 6.4 [Mishchenko et al., 2011b, 2017]. It consists of three parts: left
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Figure 6.4 – A miter for representing the care set of a target node. In the framework for SAT-based logic
optimisation with don’t-cares, a SAT solver initialised with this miter computes care-set minterms for
the target node n [Mishchenko et al., 2017].

subcircuit, right subcircuit, and comparison logic. The left subcircuit

represents the window computed for a target node n, so it includes

the function of n, f (X ), as well as nodes in its TFI and TFO, and the

candidate divisors di . The right subcircuit differs from the left one only

in the polarity of the function f (X ), because an inverter is added at the

output of f (X ). POs of the left and right subcircuit are zi (X ) and z ′
i (X ),

respectively. The comparison logic with output Cn(X ) detects if the POs

from at least one pair (zi (X ), z ′
i (X )) evaluate to a different value for a

given assignment of the PIs X .

Care-set minterms can
be computed using a
SAT solver initialised

with the miter

When a SAT solver is initialised with this miter, a variable for each

node is introduced. Thus, when the problem is satisfiable, the returned

satisfying assignment returns an assignment for each signal of the net-

work, including the PIs and POs of the left and right subcircuits, the

divisors, and the outputs f (X ). When the output of the miter Cn(X ) is

assigned 1, the values for the X variables in the returned assignment

represent a care-set minterm MX , because the POs from at least one

pair, (zi (X ), z ′
i (X )), evaluate to the opposite value due to the different

polarity of f (X ). The minterm MX is on-set or off-set minterm depend-

ing on whether f (X ) evaluates to 1 or 0, respectively. Otherwise, if the

problem is UNSAT, a care-set minterm does not exist.
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Figure 6.5 – Flow of the algorithm for feasibility check based on cube enumeration. The algorithm
proves the set D ′ as infeasible while computing a partial SOP if a pair of minterms (M1, M2), which the
divisors from D ′ cannot distinguish, is found. Otherwise, D ′ is feasible and a complete SOP representing
the function of the target node n as function of the divisors D ′ is returned.

Minimisation of the
set of candidate
divisors

The cube enumeration algorithm, which we call CUBEE, iteratively min-

imises the set of candidate divisors while performing a feasibility check

in each iteration. Assume that the set of candidate divisors D initially

contains k divisors, D = {d1,d2, . . . ,dk }. In iteration i , where 0 ≤ i ≤ k−1,

the divisor dk−i is removed from D, and a feasibility check is run for

the minimised set D ′ by generating an on-set SOP for the function f (X )

with the divisors from D ′ as inputs, as described below. When the set

D ′ is feasible, the feasibility check returns a complete on-set SOP that

proves that the divisor dk−i can be removed from D. Otherwise, if the

set D ′ is infeasible, only a partial SOP is computed, and the divisor dk−i

remains in the set D. In both cases, the iterations continue and the

process is repeated for the next unchecked divisor. For a set D with size

k, the process is repeated k times, and k on-set SOPs are generated,

some of which are partial SOPs.

Feasibility check of a
set of divisors

To generate on-set SOPs, a SAT solver is initialised with the miter from

Figure 6.4. Then, by using this SAT solver with incremental solving and

assumptions, the SOP is generated. In each iteration, the algorithm for

feasibility checking receives as input the initialised SAT solver and the

minimised set of candidate divisors D ′. It starts by assuming that the

variable of the function f (X ) in the left subcircuit is 1. As previously

described, the SAT solver returns a satisfying assignment for all variables

of the SAT problem. The assignment for the variables X define an

on-set minterm M1 for the function f in terms of X . Similarly, the

assignment for the variables assigned to the divisors from D ′ define an

on-set minterm N for the function f in terms of the divisors from D ′.
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Thus, for each bit of N , we have Ni = gi (M1), where 1 ≤ i ≤ k. Next, to

represent the target function in terms of the divisors, the minterm N

can be expanded to a cube with the fast non-canonical expansion from

Section 4.1.2 with one modification. Instead of using an off-set SAT

solver, the variable of the function f (X ) in the left subcircuit is assumed

to evaluate to 0, and each divisor’s variable is assumed to evaluate to its

corresponding value from N . If the problem is UNSAT, we can proceed

with the fast non-canonical expansion. To ensure generating minterms

that are not yet covered, the computed cube is added as a blocking

clause to the SAT solver. Yet, unlike the SAT-based SOP generation

from Chapter 4 where a function can always be represented using its

PIs and the SAT problem is always UNSAT, in this case, the problem is

satisfiable if D ′ is infeasible. In such a case, the SAT solver returns a

satisfying assignment that defines an off-set minterm M2. As defined

with Theorem 4, this minterm proves that the set D ′ is infeasible because

the pair of minterms (M1, M2) is distinguished by the function f (X ) but

not by the set of divisors, which in both cases evaluate to N . Cubes are

generated either until all minterms are covered, or until it is proved that

the set D ′ is infeasible.

Difference from the
SAT-based SOP

generation

This SOP generation operates similarly to the SAT-based SOP generation

from Chapter 4, with the following differences. Only the on-set SOP

is computed, which can invoke longer runtime when the off-set SOP

is smaller. Instead of using two SAT solvers to generate the on-set,

only one is used by assuming the value of the variable f (X ) to 0 and 1,

respectively, in order to consider the off-set and on-set of the target node.

The miter for initialisation of the SAT solver is different and enables us

to use don’t-cares because we compute an SOP for a subcircuit instead

of a complete circuit, so TFI/TFO nodes can be easily included. The

enumerated cubes are not prime and SOPs are redundant, because the

minterms are expanded only with the fast non-canonical expansion

from Section 4.1.2, and the algorithm for removing redundant cubes

from Section 4.1.3 is not used, which decreases the required runtime

for SOP generation.

Generation of the
resubstitution function

As the feasibility checking that uses cube enumeration builds an SOP

when the set of candidate divisors is feasible, the same algorithm CUBEE
can be used for the generation of the resubstitution function. Actu-

ally, when the set of candidate divisors is minimised iteratively, the

resubstitution function is obtained as the last-generated complete SOP.
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6.3 Experimental Results

In this section, we first introduce the experimental setup. Then, we

compare the algorithms from the two methodologies for resubstitution:

(1) when they are used for minimisation with feasibility checking of sets

of divisors, and (2) for generating a resubstitution function.

6.3.1 Experimental Setup

Short description of
the compared
algorithm
implementations

The framework for post-mapping logic optimisation, which is described

in Section 6.1, is available through the command &mfsd in ABC [ABC].

This framework includes the algorithm based on cube enumeration

CUBEE from Section 6.2.2. In order to compare it with the algorithms

based on a resubstitution miter from Section 6.2.1, we implemented

them in ABC as well. For their implementation, from ABC, we use

its integrated incremental SAT solver derived from an early version of

MiniSAT [Eén and Sörensson, 2003], which also provides proof of unsat-

isfiability for UNSAT problems. First, we implemented the algorithms

for minimisation and feasibility checking MITER0, MITER1, and MITER2,

as described in Section 6.2.1. For MITER2, we also provide an alternative

implementation MITER2PP that uses the SAT solver interfaces for push-

ing and popping of assumptions. We use two existing implementations

of the algorithm INTER from ABC; that both derive an interpolant from a

proof of unsatisfiability. The first implementation INTERTT returns the

interpolation function as a truth table but works only for functions with

up to 8 inputs. The second implementation INTERAIG has no limits on

the number of inputs because it returns the interpolation function as

an AIG but has a longer runtime compared to the first one.

BenchmarksFor the comparison, we use the set of 18 proprietary industrial bench-

marks, which is used also in Chapter 4. These are large benchmarks

whose sizes vary between 2.8K and 196.6K AND nodes. For each bench-

mark, the resubstitution algorithms are called more than 1230 times.

We excluded only the benchmark test15 for which they are called only

twice.

Logic synthesis flowFor each benchmark, we run the following flow of commands from ABC.

After the circuit is read into ABC (command read), it is converted into an

AIG (command &get), and optimised with the &dc2 command that per-

forms local optimisation. Next, the framework for logic optimisation, in
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Figure 6.6 – Number of removed divisors by the resubstitution algorithms for minimisation.

which we have integrated all previously mentioned algorithms, is used

to create and optimise a LUT mapping (command &mfsd -K 4 -W 0). The

flag -K sets to use 4-input LUTs. The usage of observability don’t-cares

is disabled with the flag -W that sets the number of TFO levels to 0. This

enables us to compare fairly the two options while using a simpler struc-

ture for the resubstitution miter from Figure 6.3 that excludes the cones

Cn . The same satisfiability don’t-cares are considered in both cases,

because we use the inputs of the window computed by &mfsd as inputs

of the target node and divisors functions in the resubstitution miter. We

call each of the resubstitution algorithms for each critical node selected

by &mfsd. The window for the target node and the initial set of candi-

date divisors are used as computed by &mfsd. The reported runtime is

always an average over three runs of the corresponding algorithm.

Role of CUBEE in the
command &mfsd

The command &mfsd uses the algorithm CUBEE both for minimisation

and feasibility checking of the initial set of divisors, and for generating

the resubstitution function when the minimised set of divisors has at

most k divisors, where k is the number of inputs of the used LUTs.

When the LUT mapping is performed with 4-input LUTs (command

&mfsd -K 4), on average, CUBEE takes 17.9% of the runtime required for

the function &mfsd; but in some cases it takes up to 30.7% of the total

runtime. Reducing its time therefore would lead to a significant runtime

reduction of the overall time for logic optimisation.
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Figure 6.7 – Reduction in runtime achieved by pushing and popping of assumptions. The runtime of
the implementation MITER2PP is compared to the runtime of MITER2.

6.3.2 Minimisation and Feasibility Check of a Set of Divisors

AlgorithmsFor the minimisation and feasibility check of a set of divisors, we com-

pare the algorithms MITER0, MITER1, MITER2, MITER2PP, and CUBEE.

Comparison in terms
of quality of results

Regarding the quality of results, we notice that the algorithm MITER0
removes only 17.5% of the divisors removed by the other algorithms

because it uses only the set of assumptions for UNSAT that is often

a suboptimal set. Regarding the other algorithms, we minimised the

sets of divisors only for 7 benchmarks, because the initial divisor sets

received from &mfsd usually consist mostly of essential divisors and

there are only few opportunities for minimisation. As Figure 6.6 shows,

the algorithms MITER1, MITER2, and CUBEE removed almost the same

number of divisors in total, with the algorithm MITER2 being the most

efficient because it tries to select the best option for removal.

Runtime reduction
using pushing and
popping of
assumptions

As the algorithm MITER2 generates the best quality results, we also pro-

vide the implementation MITER2PP for it that uses the interfaces for

pushing and popping of assumptions. These interfaces enable preserv-

ing the internal state of the solver between consecutive SAT calls. As

many calls differ in only one assumption, as Figure 6.7 shows, MITER2PP
reduces the runtime up to 16.3% compared to MITER2, and achieves an

average reduction of 8.2%. A similar reduction can be also obtained for

the algorithm MITER1.

Comparison in terms
of performance

Regarding the runtime of all algorithms, CUBEE has the longest runtime.

Compared to it, the algorithm MITER1 reduces the runtime by 89.7%. As

we mentioned previously, it is the least efficient for minimising sets of
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divisors, but it is the best option if only feasibility checking is required.

Next, compared to CUBEE, the algorithms MITER1 and MITER2 decrease

the runtime by 54.8% and 54.4%, respectively. They have similar run-

time because, in the first round, both of them require k SAT calls when

the size of the initial set of divisors is k. The algorithm MITER2 executes

additional SAT calls in the second round only for the remaining auxiliary

divisors. Finally, the implementation with the pushing and popping of

assumptions MITER2PP reduces the runtime by 58.1%, on average, com-

pared to CUBEE. Figure 6.8 shows the runtime of the algorithms based

on a resubstitution miter relative to the runtime of the algorithm CUBEE
for three benchmarks with the highest number of calls to the resub-

stitution algorithms. It compares separately the runtime for sets with

a different number of divisors separately, and shows that the runtime

reduction of the algorithms based on a resubstitution miter are directly

proportional to the number of divisors in the initial set. The runtime

of CUBEE increases faster because the number of cubes in the gener-

ated SOPs increases exponentially in the worst case; hence, it requires

more SAT calls compared to the algorithms based on a resubstitution

miter. Similarly, Figure 6.9a illustrates the average runtime per node for

the minimisation and feasibility check of sets with different number of

divisors.
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Figure 6.9 – Comparison of the average runtime per node of the resubstitution algorithms for sets of
divisors with different size.

6.3.3 Generation of Resubstitution Function

The resubstitution
function is generated
regardless of the
number of divisors in
the minimised set

As in our flow of commands we use 4-input LUTs, the command &mfsd

requires a resubstitution function only when the final set of divisors has

at most four divisors, and it can be implemented with one LUT. Other-

wise, to resubstitute the function of a target node, &mfsd generates a

LUT-structure by using QBF solvers. However, other algorithms, such as

the ones for ECO and global reconstructing, might require generating

a resubstitution function with more than four inputs. Thus, we com-

pute a resubstitution function with the algorithms CUBEE, INTERTT, and

INTERAIG, regardless of the size of the final set of divisors.

Using only one
iteration of CUBEE to
generate a
resubstitution function

The algorithm CUBEE returns an on-set SOP of the required resubsti-

tution function in the last iteration performed for the minimisation

of the set of divisors. However, as Figure 6.9 shows, the minimisation

and feasibility check has a longer runtime than the generation of the

resubstitution function. Even if we add the runtime required for gener-

ating a resubstitution function to the algorithm MITER2PP, which has

the best performance and quality of results among the algorithms based

on a resubstitution miter, it would still have better runtime than CUBEE.
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Thus, in this section, we assume that the resubstitution function should

always be generated by repeating the process. When comparing the al-

gorithms in this section, to generate the resubstitution function, we run

one iteration of CUBEE with the minimised set of divisors as an input.

Comparison in terms
of performance

We observe that there is no clear winner among the three algorithms:

the best option for generating a resubstitution function depends on

the size of the minimised set of divisors. Next, we compare the average

runtime of the algorithms among all benchmarks. First, for sets with

up to 6 divisors, the algorithm based on cube enumeration CUBEE has

the best performance: INTERTT and INTERAIG increase the runtime

by 7.1% and 46.6%, respectively. For sets with 7 and 8 divisors, com-

pared to INTERTT, CUBEE and INTERAIG increase the runtime by 15.4%

and 21.4%, respectively. Last, when the sets have more than 8 divisors,

compared to INTERAIG, CUBEE increases the runtime by 50.2%. The

algorithm INTERTT is unavailable in this case because the implemen-

tation in ABC that derives the interpolant as a truth table works only

when the set of divisors has up to 8 inputs. Figure 6.9b compares the

average runtime per node required to generate a resubstitution function

for sets with a different number of divisors. Further, Figure 6.8 shows

the runtime of the interpolation algorithms relative to the runtime of

the algorithm CUBEE for three benchmarks with the highest number of

calls to the resubstitution algorithms. It shows that the reductions of

the algorithms based on a resubstitution miter are directly proportional

to the number of divisors in the initial set. For these benchmarks, the
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algorithm INTERTT outperforms CUBEE, regardless of the number of

divisors, whereas INTERAIG has a better performance only for larger

sets.

6.4 Conclusion

Key insightsResubstitution is an important part of the algorithms for logic optimi-

sation, but also of ECO and of global restructuring of circuits. In this

chapter, we have compared SAT-based algorithms for resubstitution

based on two different concepts—(1) based on a resubstitution miter

and interpolation, techniques which are also used in Chapter 5, and

(2) based on cube enumeration, which is based on the SAT-based SOP

generation from Chapter 4.

For minimising and feasibility checking of a set of divisors, the algo-

rithms based on resubstitution miter have better performance com-

pared to the algorithm based on cube enumeration due to the lower

number of SAT calls. The one with two rounds of SAT solving has the

best trade-off between runtime and quality of results. Yet, the algo-

rithm that uses a resubstitution miter and a single SAT call is the best

option when a set of divisors should be checked only for feasibility of

resubstitution.

For generating a resubstitution function, determining the best option

depends on the number of divisors that will be used for the resubsti-

tution. For sets with up to 6 divisors, the algorithm based on cube

enumeration has the best performance. For sets with more than 6 divi-

sors, it is better to use interpolation. Hence, a hybrid approach might

work best in some cases.

Possible future
improvements

The algorithms based on cube enumeration and interpolation can be

further improved in the future. For the one based on cube enumeration,

we can compute the on-set and off-set SOPs in parallel, as presented

in Chapter 4. This would reduce the runtime when the off-set SOP

contains cubes less than the on-set SOP. For interpolation, there are

some limitations on the existing implementations that we use from ABC.

First, we use the same resubstitution miter both for minimisation of the

set of divisors and for generating the resubstitution function. Thus, to

generate the interpolant, we can reuse the proof of unsatisfiability from

the last SAT call for minimisation. However, the integrated SAT solver
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in ABC does not support assumptions and proof logging at the same

time. Thus, currently a new SAT solver instance is initialised and run

to obtain the proof of unsatisfiability for the interpolant. Second, the

function that generates the interpolant as a truth table outperforms the

one that generates it as an AIG, but this works only for sets with up to 8

divisors; however, it can be extended to work with larger sets as truth

tables have been shown as scalable for functions with up to 16 divisors.
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7 Conclusions

SAT solvers are
already integrated
into many EDA tools

SAT solvers are applied across a number of domains in computer sci-

ence, including EDA. This is mostly due to the continuous improvement

in their performance that is primarily enabled by the SAT community.

SAT solvers are already used by every EDA vendor [Chelf and Chou, 2008;

Malik, 2010] and are included in many academic EDA tools. They are

typically the main engine for verifying a design’s implementation, but

more recently they are also applied for logic synthesis as they have been

shown to be the best option so far for many logic synthesis applications.

The main restraining
reasons for expanding
the use of SAT solvers

However, for certain problems, employing SAT is still challenging for

two main reasons. First, the runtime of SAT solvers for a given problem

varies significantly, and some hard problems remain unsolved after

hours of solving. Second, canonicity is key to some applications in logic

synthesis and verification, such as functional equivalence checking,

Boolean matching, and caching of subproblems. For a satisfiable prob-

lem, SAT solvers can return any satisfying assignment; consequently,

SAT solvers are often perceived as non-canonical and, as such, inad-

equate for applications requiring canonicity. Therefore, many logic

synthesis and verification applications still rely on canonical BDDs, the

fast manipulation of AIGs and other Boolean networks, or use large

libraries of known solutions. Yet, in some cases, these traditional meth-

ods are incapable of sustaining the continuous growth of design size

and complexity, or they have inefficient performance for some practical

circuits.

Enabling canonicity in
SAT-based
applications

In this thesis, we have demonstrated that canonicity in SAT-based ap-

plications can be attained by using the LEXSAT algorithm, for which

113



Chapter 7. Conclusions

we have also proposed a rapid implementation. Methods that typically

rely on BDDs for canonicity can now use instead SAT solvers by gen-

erating LEXSAT assignments instead of satisfying assignments. Even

though generating a LEXSAT assignment requires multiple SAT calls,

which can lead to longer runtime, the LEXSAT-based implementations

can have better performance compared to conventional techniques.

For example, when generating canonical SOPs, our SAT-based method

has a better runtime for 5 out of 12 cases compared to the state-of-the-

art BDD-based method; and in 6 cases it generates an SOP whereas

the BDD-based method fails due to a time limit. Generally, BDDs are

canonical by construction, so they lead to canonical results even when

canonicity is not required. In contrast, SAT-based algorithms can relax

canonicity by simply using regular satisfying assignments in order to

achieve better performance. For example, our SAT-based method is 4.3x

faster when it generates non-canonical SOPs instead of canonical ones.

Building SAT-based
applications with

predictable runtime
and results

Despite the unpredictable runtime of each call to the SAT solver, we have

shown that the SAT-based implementations of some applications can

provide intermediate results that enable estimating the final runtime

and quality of results. For instance, our SAT-based method for SOPs

generates an SOP cube by cube. This progressive nature has several

advantages: (1) the algorithm can build partial SOPs for applications

that can work with an incomplete functionality of a circuit, and (2)

it provides intermediate results that facilitate the estimation of both

the additional runtime required to finish the SOP generation and the

size of the final SOP. Likewise, when iteratively minimising the set of

divisors in resubstitution, we know the number of divisors that we have

already checked at any point, hence we can estimate the total runtime

for the algorithm. This is another advantage over methods based on

BDDs whose termination time and quality of results are unpredictable

because the complete BDD has to be built before it can be used.

Introducing new
SAT-based algorithms

The new SAT-based algorithms introduced in Chapters 3, 4, and 5, can

be used as building blocks in logic synthesis tools. Their initial imple-

mentations either have better performance than their state-of-the-art

versions, offer new features that are of interest for their target applica-

tions, or both. They can therefore ease the development of new logic

synthesis algorithms and can help to maintain existing algorithms by

upgrading them with the new SAT-based versions of the building blocks.
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Applications beyond
logic synthesis

Remarkably, the algorithms for LEXSAT and SOP generation can be

beneficial to applications from domains beyond logic synthesis, as ex-

plained in Chapter 3 and Chapter 4. For example, LEXSAT can be used

also for applications from other stages of the EDA flows and for solving

specialised SAT problems, such as MAX-SAT, AllSAT, and #SAT, that

are practical in various domains; and SOPs are also used in applica-

tions such as fuzzy modelling, data compression, and photonic design

automation.

7.1 Towards Faster SAT-Based Applications

Dealing with long
runtime for hard
problems

The long and unpredictable runtime for certain hard problems remains

the most challenging concern regarding the use of a SAT solver. In this

section, we present some ideas and observations that help in dealing

with this problem and that ease the future development of even faster

SAT-based logic synthesis applications.

Exploiting features of
SAT solvers

In order to have fast SAT-based applications, it is not sufficient to rely on

the improvement from the SAT community of the performance of SAT

solvers. To make the most of SAT solvers, we must detect and master

the SAT solvers’ features that are particularly useful for our applications.

For example, incremental SAT solving with assumptions is widely used

in logic synthesis applications because it enables reusing the initialised

SAT solver instance throughout many SAT solver calls. Similarly, many

logic synthesis algorithms can benefit from the pushing and popping of

assumptions, as proposed and used in this thesis. This feature enables

preserving the internal state of the SAT solver between consecutive

invocations of the SAT-solving procedure. Through the generation of

LEXSAT assignments, expansion of minterms to cubes when generating

SOPs, and minimisation of sets of divisors in resubstitution, we have

seen that pushing and popping can decrease the runtime for SAT solv-

ing when we execute consecutive SAT calls that differ in one or few

assumptions. In the same way that LEXSAT enables canonicity, we also

need to discover other specialised SAT-solving techniques that bring

new features to SAT-based applications.

Creating and
exploiting
opportunities for
parallelisation

Although our algorithms are implemented sequentially, there are many

opportunities for parallelisation, which could significantly improve

their performance. In particular, for the SAT-based SOP generation we
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discuss that (1) the on-set and off-set SOPs can be generated in parallel,

and (2) we can parallelise the generation of an SOP for each output.

Also, the presented sequential implementation of carving interpolation

is on average two times slower than the Craig interpolation, because the

carving interpolant is composed out of two Craig interpolants. However,

as these two Craig interpolants are independent, the runtime can be

improved by computing them in parallel. Lastly, in the proposed resub-

stitution algorithm with two rounds of SAT solving, the k SAT calls from

the first round can be executed as k separate processes. Each process

obtains the total number of removed divisors when the corresponding

divisor is removed. Many other SAT-based algorithms in logic synthesis

have similar opportunities for parallelisation, which can be evaluated

in future research.

Efficient encoding and
execution of logic

synthesis problems as
SAT

Finally, we have to find efficient ways to encode the logic synthesis prob-

lems as SAT. We can learn some general techniques and approaches

from the existing SAT-based applications where SAT solvers are already

used efficiently. Also, in order to achieve shorter runtimes for hard prob-

lems, it is often better to use several calls to the SAT-solving procedure

instead of using one, either by using assumptions or by splitting the

hard problem into multiple easier subproblems. For example, we can

divide any SAT problem into 2n independent subproblems by using

assumptions for n variables. This is similar to how carving interpolation

divides a SAT problem into two subproblems by assigning a variable

to 0 and 1, respectively. If at least one subproblem is satisfiable, then

it returns a satisfying assignment that proves the satisfiability of the

original SAT problem. Otherwise, the evaluation of all subproblems

to UNSAT proves that the original problem is UNSAT. This is yet an-

other opportunity to use parallelism as suggested previously, as the 2n

subproblems are independent and can be run in parallel.

7.2 Final Remarks

In this thesis, we have enabled the integration of SAT solvers in applica-

tions that require canonicity and introduce novel efficient SAT-based

building blocks that can be easily included into logic synthesis tools.

The proposed features and ready-to-use algorithms bring logic synthe-

sis, but also EDA, one step closer to a quick and efficient utilisation of

SAT solvers with all their appealing features.
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7.2. Final Remarks

However, this is still a thriving research direction with many opportu-

nities for improvement. BDDs have gone through 35 years of contin-

uous in-depth research to gain their current strength. Such dedicated

research of exploiting SAT solvers specifically for logic synthesis, com-

bined with the support from the SAT community that improves the SAT

solvers performance for any application, would strengthen their role

in logic synthesis. This would help to overcome the remaining limita-

tions of SAT-based algorithms. More importantly, it would enable more

powerful logic synthesis tools that can produce circuit implementations

better than the current ones and that can keep up with the growing size

and complexity of designs.
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