ELVE: An Interactive and Extensible Visualisation
Tool for Logic Circuits

Grégoire Hirt, Ana Petkovska, and Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{gregoire.hirt, ana.petkovska, paolo.ienne} @epfl.ch

Abstract—We present a novel interactive open source tool for
visualisation of logic circuits. The current state of the tool offers
basic features for visualising circuits and provides a mechanism
for easy extension through plug-ins in order to fit the user’s
needs. The interactive user interface allows the user to change
how the circuit is visualised, as well as to compress, highlight or
extract some logic for analysing the circuit. The proposed tool
can be used to better understand the effects of the developed
algorithms in research projects, for educational purposes, as well
as for generating figures for technical documents.

I. INTRODUCTION

It is well-known that the human brain processes visual
information much faster and easier than text. This fact is
already exploited by most electronic design automation (EDA)
tools that can represent visually logic circuits for several rea-
sons. First, visualising a circuit design enables understanding
its structure, identifying structural patterns, comparing it to
another design or circuit, etc. This is particularly helpful when
developing algorithms that operate on logic circuits, such as
algorithms for logic synthesis and mapping, because we can
learn how the algorithms operate by visualising the affected
regions and changes made on the circuit structure. In the
same manner, such a tool can be efficiently used by educators
and students. Finally, a good visualisation of circuits is often
required to produce figures for technical documents, such as
publications and technical reports.

For example, ABC [1], which is a widely-used academic
software system for synthesis and verification of logic circuits,
represents the circuit internally as a directed acyclic graph
(DAG). Then, it creates a textual graph description for the
DAG and renders it in a graphical form. However, as Figure 1
shows, even for some small circuits these static images are
unreadable due to the large number of entangled edges. In
such cases, some interactive options, such as clustering and
highlighting nodes, are required in order to fully exploit the
power of visualisation.

On the other hand, existing tools dedicated to circuit visuali-
sation are mainly developed for pedagogical use [2-6], so they
are either bound to a specific hardware description language
(HDL), are restrained to drawing and editing circuits schemes,
or are not publicly available.

The biggest drawback of all existing options is that they
have limited capabilities and are not easily extensible, while in
academia, we typically need a representation and visualisation
of the circuit that is specific to the on-going research.

Thus, in this paper we present an interactive visualisation
tool for representing the design and structure of logic circuits
generated by different EDA tools. We can not predict nor
implement all visualisation options and input/output formats
that are required by different tools and projects, but instead
we provide an initial open source implementation with basic
options that the users can further extend according to their
needs through dedicated plug-ins. We would like to encourage
sharing of plug-ins between users, and thus, in the future,
we plan to provide a web based system that would ease this
process. Currently, the proposed tool and plug-ins have good
performance for logic circuits of medium size with thousands
of nodes, but a more sophisticated clustering algorithm is
required for fast processing and practical visualisation of large
circuits. Also, although we are currently focused on circuits
resulting from logic synthesis and mapping algorithms, the
tool can be easily extended to support designs from different
stages of the EDA flow since all designs can be easily
represented as a graph.

Following, in Section II, we describe our tool for visu-
alisation of logic circuits and evaluate its performance. In
Section III, we describe the related work. Finally, Section IV
concludes the paper.

II. INTERACTIVE AND EXTENSIBLE VISUALISATION TOOL
FOR LOGIC CIRCUITS

The proposed tool, which is called ELVE Logic Visualisation
Explorer (ELVE) !, is designed as an extensible and interactive
graph viewer and manipulator, and is adapted for visualisation
of logic circuits. It is developed as a multi-platform desktop
application that consists of a core module with many primitives
and features that allow basic manipulation and visualisation of
graphs. Furthermore, the core module enables linking of plug-
ins at runtime with which the user can extend both the graph
processing pipeline and the GUI of the application. Figure 2
illustrates its software structure. In the following sections we
describe our initial implementation of ELVE in details.

A. Ot as Application Framework

ELVE is implemented using Qr [7] that is a well-known
open-source application framework. Qt is cross-platform and
provides a graphical user interface (GUI) framework. Qt uses
the C++ programming language, and thus it is articulated in a

Uhttps://github.com/stdgregwar/elve

https://github.com/stdgregwar/elve

01? I}
“ "{\0/3' !’,‘. 0 '

L L |

(a) A visualisation generated by ABC.

(b) A visualisation generated by ELVE.

Figure 1: Visualisation of a 5-bit multiplier mapped into 6-input lookup tables (LUTs). The graph consists of 44 nodes and
167 edges that are spread over 5 levels. Statically, the two visualisation are very similar and the connections in the lower levels
are hard to follow. However, ELVE enables interacting with the graph and moving nodes that can help identifying easily their
inputs and outputs. Moreover, we can dynamically highlight paths and nodes in the graph that eases the analysis of such logic
circuits. The information shown in the nodes of ABC is now shown as a tooltip when the user hovers the pointer over a node.

Main Window
Multiple Document Area

Internal Graph
Representation

Plugins Interfaces
File Loader File Writer
Graph
Transformation Viewport Instances
Nodes Data
Layout Look
Extra Data

Micro-State Command Line

Layout Data

Selection Data || Plugin Loader | Graph Viewport Store Viewer

Figure 2: ELVE’s software structure.

object-oriented manner by following a model-view-controller
(MVC) pattern, which separates the internal representation of
information from the user interaction. For ELVE, Qt is used
as a widget toolkit that provides many predefined libraries
of widgets (i.e., graphical control elements) that ease the
construction of desktop based applications with a GUIL

For ELVE, Qt displays the main window and, most impor-
tantly, the viewport that represents the area in which the graph
is drawn. Qt directly allows having interactive items that can
be clicked and manipulated. For ELVE, these items are the
nodes and edges of the graph representing the logic circuit.

B. The Core Module

The core module is the heart of ELVE. It defines the internal
graph representation, provides the interfaces for the plug-ins,
allows loading of plug-ins, and gives the graph viewport. In
this section, we describe the data and systems comprising it.

1) Internal Graph Representation: ELVE’s internal graph
representation is an immutable data structure meaning that
the graph data is never changed, but if we want to make
some changes into the graph’s structure (like clustering some
nodes), we need to create a new graph. This allows to revert

the graph to a previous state at any moment. The internal graph
representation consists of the following parts.

e Nodes Data is a tabular structure that keeps the in-
formation for all nodes. The ID of each node represents
its index in the table. For each node, we also keep the
name, ancestor nodes, and type (which can be input,
output, node, cluster, input cluster, or output cluster).
Additionally, when extending the core module with plug-
ins, any kind of data can be transparently attached using
JavaScript Object Notation (JSON) fields, allowing tree-
like data constructions to be stored in each node.

e Extra Data is a supplementary node information
stored in a sparse-table. It stores extra nodes created by
ELVE or its plug-ins. For example, a cluster is a newly
created node that replaces several nodes in the graph, and
thus it contains the IDs of its underlying nodes.

e Layout Data represents the information for the layout
system described in Section II-B2. It contains the position
of all nodes, as well as the layout constraints and looks.

e Selection Data contains the selections masks of the
selection system described in Section II-B3.

Since each of these parts is also immutable, when we create
a new graph, the ones that remain the same can be reused in
order to preserve memory.

For Node Data and Extra Data, ELVE constructs a
pointer based representation that allows to traverse the graph
by following edges, and thus, any graph algorithm can be ap-
plied quickly and efficiently. To control how this representation
is constructed, any plug-in of the type Transformand File
Loader, which are described in Section II-B5, can provide an
alias table and an excluded table. The alias table maps
nodes through their IDs (from one ID to another), allowing to
route edges to other nodes while the excluded table defines
which nodes should be excluded from the visualisation. The
combination of the two allows for various constructions of

the graph, from clustering nodes to extracting only a subset
of them. Since the pointer based representation of the graph
is created from these tables only when the graph is created, it
does not impact traversal or visualisation performance.

The internal graph representation can be serialized as a
JSON file or it can be saved in a binary format. This allows
to save the state of the visualisation at any time and resume
working with it later.

2) Graph Layout System: The key feature of the tool is
drawing the graph with well-spread layout that minimizes
the number of elements that overlap. By default, ELVE uses
the simple force-directed Eades [8] layout algorithm. It is
implemented as a small and multi-threaded physical engine,
and treats the graph as a point system in which each edge
represents a spring and all nodes are small positives charges
that repel each other. A physical simulation then naturally
reduces entropy and leaves the graph in a homogeneous spatial
distribution.

The core module exposes interfaces to the physical system
and to the implementations of forces. Thus, additional plug-
ins can be written to enable new layouts that can either extend
the existing physical force system or fully evict it if a different
approach is required.

3) Selection System: A selection mask is a set of nodes
represented through their IDs that can be used both as an
input to or as an output of ELVE’s commands. Each graph in
ELVE has 10 different selection masks that allow having 10
different selections of nodes. The selection masks are visually
represented by changing the color of the selected nodes and
edges, and only one selection mask can be active and shown
at any moment. For example, the command group, which
allows manual clustering of nodes, takes the active selection
mask and creates a cluster node that replaces the selected
nodes.

The motivation for the selection masks is that they can
display result of the algorithms and can control their behavior.
For example, to open the fan-in cone of a node as a subgraph,
we should select the node, run the Fan select plug-in that
saves the fan-in cone as a selection mask, and then we can
open the selection as a new graph. In this case, the selection
mask acts both as a convenient way to store the data and to
visually check the result. Basic set operations such as union
and intersection can also be applied to the selection masks to
obtain a new selection.

4) Data Pipeline: ELVE’s core module is designed as a
data pipeline, which is shown on Figure 3. The data pipeline
receives the information for the logic circuit by reading a file,
and finally provides an interactive visual representation of the
graph. Each stage of the pipeline, except stage 2, is bound to
one of the plug-in types described in Section II-BS5. Each stage
can be invoked both from the GUI and from the command line
interface (CLI).

Once the file is read (stage 1) the graph is in ELVE’s
store, which is explained in Section II-C3, and one can
interact with it trough the CLI loop (stages 2 and 3). This
allows to transform the graph before showing it. Then, the user

CLI loop
A

r i B
:_1_- _______ TSRS o '_3_ _________
| File reading 1 : Show ? | Transform 1 Shortcuts used
"""" R -7 === __when layout is
yes / ‘preserved’
) —-
4.Generate 1 N
Layout gre—SimuIate _>: 6D'is la '\'I
System : play |
I
GUlloop < ;7. i
; Transform |
O PR
1 8. ! 9.
i User interaction/Selection ! Simulate

Figure 3: ELVE data pipeline. Any part of the pipeline can
be replaced because they are implemented with plug-ins. The
File writer plug-in is not present since it can be invoked
at any stage.

can choose to show the graph (stage 2) in ELVE’s viewport
by executing the GUI loop (stages 4 to 9). The primary layout
stages 4 and 5 generate the layout system and run the layout
algorithm for the first time before displaying the graph in stage
6. From this point it stays in a loop between the stages 8, 6
and 9, when the user can interact with the currently displayed
graph. If in meanwhile a Transform plug-in is triggered,
then it goes trough the stages 7, 4, and 6, but does not pre-
simulate again. This is required for preserving the current
layout of the graph as much as possible even when applying
transformations. These shortcuts also allow the user to see the
changes made to the graph in real-time.

5) Extension with Plug-ins: ELVE exposes interfaces for
some of its modules and allows linking plug-ins that imple-
ment these interfaces at runtime. Each part of the data pipeline
can be extended or replaced using a plug-in. The core module
provides interfaces for the following six types of plug-ins.

e The File Loader interface allows to read a circuit
description from a file and to initialise the internal graph
representation. Each input file format can be supported
by a different plug-in.

e The File Writer interface allows to read the internal
graph representation and write either the circuit descrip-
tion into a file, or output the visualisation in a file for
further use.

e The Layout interface allows to implement different
layout systems that define the position of the nodes and
create different visualisations of the graph.

e The Look interface allows to define how nodes and edges
are drawn based on the graph data and the output of the
layout stage.

e The Transform interface allows to implement algo-
rithms, such as the clustering algorithms, that receive a

ELVE : Logic Visualization Explorer - o x

load blif "/home/ana/Desktop/alud.blif"
simple layout

show -g

load_blif "/home/ana/Desktop/rcad.blif"
level_layout -u 50

show -g

Figure 4: ELVE’s GUI when two circuits (alu4 and rca4) are
read into ELVE. Both circuits are available through the store
menu on the left. In the viewport, the tab for the circuit rca4 is
currently active and showing its implementation. We can see
the executed commands in the shell shown at the bottom.

graph and output a new graph with a different set of nodes
and edges.

e The Micro-State interface allows to redefine the
behavior of the viewport in order to extend the user
interaction or to add overlays to the drawing.

6) Plug-in Loader: The plugin loader is a helper module
that automatically loads any plug-in placed in ELVE’s dedi-
cated folders. For each available plug-in, it tests if the plug-in
is of the right type and if it is linked with the appropriate
version of ELVE. This way any unsuitable plug-in would be
reported and disabled.

7) Graph Viewport: The graph viewport is where the visu-
alisation and direct interaction happen. It is a canvas where the
graph is drawn and allows to interact with nodes by moving or
selecting them. Any node information (as ID, level, type, etc.)
can be shown as a tooltip when the user hovers the pointer
over a node. The visualisation can be zoomed and dragged at
any time to better inspect the graph. View helpers are available
to reset the view position and zoom level, as well as to look
at particular points.

C. Graphical User Interface

The graphical user interface (GUI) of ELVE allows visual-
ising circuits, but also interacting with them either through its
menus or though its command line interface. Figure 4 shows
the GUI when two circuits are read into ELVE. Each plug-in
can extend the existing GUI by adding slots to the menu trees,

(b) With clustering.

(a) Without clustering.

Figure 5: An example that illustrates the four clusters formed
by the clustering algorithm implemented with the Cluster
plug-in.

assigning shortcut keys for its actions, and providing forms for
custom control of the internal algorithms.

1) Viewport Instances: ELVE uses Qt to display a classical
multiple document interface (MDI) GUI that allows viewing
and transforming several logic circuits at the same time using
tabbed views containing viewports. It also enables opening
the result of some transformation in a new tab or showing
separately sub-graphs of the original graph.

2) Command Line Interface: Additionally, we embedded
the EDA command line interface (CLI) framework called
Alice, which is provided as part of the tool CirKit [9]. The CLI
can be used as an alternative to the GUI’s menus because each
available action in the menus is associated with a command.
Actually, when we select an action from a menu, we first issue
a command that triggers the action. With this, the history of
all executed actions is available in the CLI as commands,
and it can be used to obtain the same visualisation for a
different logic circuit by invoking the exact same actions.
Furthermore, the command history for a circuit is saved and
attached to the JSON files that are used to save the internal
graph representation.

3) Store Viewer: Alice CLI framework saves current data
into a store. This allow to have multiple circuits loaded at
once, but only the one on which we are working on is active.
The Store Viewer is a panel in the GUI that allows the
user to view which graphs are loaded in the store, to select
which one is the active graph and to show the graph.

D. Implemented plug-ins

To demonstrate the extension with plug-ins and how they
can be developed, we provide the following six plug-ins for
start, but we plan to extend this set in the future.

e The BLIF loader plug-in implements a File
Loader interface and enables visualising a circuit de-
scribed using a Berkley logic interchange format (BLIF)
file. It reads the file and translates it to the internal graph
representation.

e The SVG exporter plug-in implements a File
Writer interface and exports the current visualisation

Table I: Basic information and ticks per second achieved by

ELVE after using the Cluster plug-in.

‘ PIs

AND

| Ticks per second

Benchmark POs nodes Levels
\) \ ©=2 0=50
Adder 256 129 1020 255 | 1393.0 1898.3
Barrel shifter 135 128 3336 12| 895.1 1491.6
Divisor 128 128 57247 4372 13.8 46.1
Hypotenuse 256 128 214335 24801 0.0 11.3
Log2 32 32 32060 444 37.1 121.2
Max 512 130 2865 287 | 829.9 1283.2
Multiplier 128 128 27062 274 73.9 150.6
Sine 24 25 5416 225 | 490.3 790.5
Square-root 128 64 24618 5058 90.1 161.1
Square 64 128 18484 250 33.8 150.3
Round-robin arbiter 256 129 11839 87 | 603.9 869.9
Alu control unit 7 26 174 10 | 3992.5 4157.0
Coding- cavlc 10 11 693 16 | 3087.9 3667.1
Decoder 8 256 304 31 1654.4 24445
i2¢ controller 147 142 1342 20 | 1436.9 2270.8
Int to float converter 11 7 260 16 | 4261.1 4498.8
Memory controller 1204 1231 46836 114 475 97.4
Priority encoder 128 8 978 250 | 2262.0 2904.6
Lookahead xy router 60 30 257 54 | 3156.2 3912.6
Voter 1001 1 13758 70 | 152.6 224.6

Benchmark name
40

Theta

O Adder ® Alu control unit 2
130 X Barrel shifter ® Coding- cavic W50
O Divisor * Decoder

120 * Hypotenuse
© Log2
110 A Max
+ Multiplier
100 < Sine
V Square
90 > square-root

80

70

Load time (s)

60

50

40

30

20

10

0

+ i2ccontroller

Int tofloat converter
A Lookahead xy router
* Memory controller

¥ Priority encoder

< Round-robin arbiter
> Voter

10 100
#Nodes

100,000

as a Scalable Vector Graphics (SVG) file. This can be
particularly useful for producing technical documents.

e The Simple layout plug-in implements the Eades
layout algorithm [8] through the Layout interface. It
takes the internal graph representation as input and pro-
duces a simulable physical system that is displayed in the
viewport.

e The Level layout plug-in differs from the Simple
layout by adding vertical constraints on nodes to show
their level in the graph.

e The Fan select plug-in implements the Transform
interface and alters the current selection mask by select-
ing the fan-in or fan-out cone of the preceding selection.

e The Cluster plug-in implements the Transform in-
terface and applies a simple clustering algorithm on the
whole graph. The implemented algorithm traverses the
nodes from the outputs to the inputs and forms non-
overlapping clusters. The node on the highest level in
each cluster is consider as a root node, and the cluster
includes a cut of the root node in which all nodes, except
the root node, have a single fanout.

E. Performance

ELVE already exhibits good raw performance for logic
circuits of medium size that are composed of thousands
of nodes. Since we aim for interactivity, we analysed the
simulation speed of the layout algorithm that is measured in
ticks per seconds (TPS), where ticks are simulation steps. For
a smooth interaction, this metric should be above 30.

For evaluating the performance we used the the arithmetic
and control benchmarks from the the EPFL Combinational
Benchmark Suite [10], and their basic information are given
in Table 1. The benchmarks are run by loading the BLIF files

Figure 6: Dependency between the load time and the number
of nodes. The number of nodes are shown on logarithmic
scale. The thick lines present the trend lines for the given ©
parameter, while the thin lines present the confidence interval.
The only omitted result is for the Hypotenuse benchmark when
© = 2 because it required 16.7 hours to finish, while for
© = 50 it finished in 2.1 minutes.

and simulating the Level layout for 400 ticks, which in
most cases is sufficient for the layout to stabilize. For the
experiments, we changed the parameter © that defines the
accuracy of the Barnes-Hut [11] repulsive forces of the layout
algorithm implemented with the Level layout plug-in. We
used © = 2 (high accuracy) and ©® = 50 (low accuracy).
The reported results for the load time and TPS represent the
average over 3 runs to avoid runtime noise. All benchmarks
are executed on an Intel 17-4790 CPU clocked at 3.60GHz,
with 8 threads and 8MB of cache.

As Figure 6 shows, the loading time is linear with the
number of nodes in the benchmark. But, structural properties,
such as number of levels and interconnection of nodes, also
matter for an accurate layout, so for © = 2 all benchmarks
do not follow strictly the trend line.

Since for benchmarks with more than 10000 nodes, the
load time is too long and they require more than 30 ticks
per second, we suggest to run a clustering algorithm as a
preprocessing step, before running the layout algorithm, that
would simplify the graph by decreasing the number of nodes.
As shown on Figure 7, by running the simple clustering algo-
rithm implemented with the Cluster plug-in, we decrease
the number of nodes for 65% and the loading time for 58%, on
average over all benchmarks. With this, as Table I shows, for
most benchmarks we achieve good performance in TPS when
O = 2, but for big benchmarks we can trade the accuracy of
the layout algorithm to improve performance.

However, just few of these circuits are truly explorable

Arithmetic Control

0% 3
20%
§ -40%
E S
% 61.3% 8 3 2 3 8
P B H H H ER n_g o~ g
° @ A0 68.8% o>
8 n & 3 ° = 8
e { m 9 ®
80% e 28 © -
80% w2 o o O i
~ R A 2 R 2 8 R
5 g8 2 8
100%
0% a
3
20% m
© 2 'S
B S
409
& -40% 46.8%
S rla R B B R -
N 5 < N
g — ° =) e ©
S -60% -64.5% o o S
pi o © < °
H o O
" a 7 F 2
-80% - ullil] © g o
4 =3 © ~N <]
(S b1 - a3
-100%

- = % = ¥ >y ey i s ey s 5 &
388 % 2 8 & 5 & § % S5EEE S 2EpESEREEE OB O&
= EE 9 3 ;% 2 2 3 g5 e5<% 0 5PESs sE3EC 8 %

s = 9 & § £ t%s: o552z 2828 &
5 & 8 £ L§ £ =5 S5%8%>
s 3 S 5 28 3§ 8§ 8§%x2
b e = S <

Figure 7: Reduction of the number of nodes and load time
after executing the available clustering algorithm. The lines
over all bars give the average for the corresponding set. The
actual number of nodes and load time (in seconds) is shown
next to the bars.

in ELVE due to the large number of nodes that prevent
distinguishing nodes and connections on the screen. But, with
a more sophisticated clustering algorithm, and by expanding
and highlighting just the nodes of interest, we would be able
to explore and analyse these circuits.

III. RELATED WORK

The need for a circuit visualisation tool is recognised also by
other researchers that either introduced visualisation options in
their EDA tools or built special tools for visualisation.

Almost all tools, both commercial and academic, support
visualisation of circuits. The problem is that often their options
are quite limited, as the circuit visualisation is not their prime
focus. Also, one can hardly customize these tools to suit
its needs: the code of the commercial tools is typically not
available; while for the academic tools, there are no platforms
where these extensions can be easily shared. Moreover, the
visualisation engine of each tool is very dependent on its
internal structure, so it is hard to achieve some portability
between different tools. Finally, the academic tools usually
produce static images that do not allow any interaction.

The other option is to use tools whose main focus is visu-
alisation of circuits, but these are mainly built for pedagogical
use. For example, Shoufan et al. presented the interactive
platform VISUAL-VHDL [2] for visualizing and simulating
digital circuit written in VHDL. Later, Shoufan et al. presented
the web based platform for visualization and animation of
digital logic designs, called DLD-VISU [4]. Stanisavljevic et
al. presented a system for digital logic design and simulation
(SDLDS) [5] that consists of modules for design, simulation
and evaluation. Hacker et al. presented a set of Window-based
tools to teach elementary circuit design (WinLogilab) [6].
Poplawski et al. wrote a set of simple Java applets [3].

However, since these tools are mainly built for educational
purposes, the size of the designs that they can support is
very limited, especially because among their main options is
using Karnaugh maps and the Quine-McCluskey algorithm for
optimisation. They aim more at presenting the algorithms and
give the visualised circuits as examples or support. They are
not targeting graph drawing and interaction efficiency, but are
more focused on providing editors for the circuits. Finally,
most of them are not publicly available.

IV. CONCLUSION

With this paper we propose an initial implementation of an
interactive and extensible visualisation tool for logic circuits,
called ELVE. Our main goal is to provide a rich but flexible
tool that should mainly ease the development of algorithms
and the production of figures for technical documents, but can
also be used for educational purposes. ELVE is an open source
tool and its source code is freely available for download.

In the future, we plan to implement more plug-ins in order
to provide wider set of basic functions required for general use.
We will also update the structures and algorithms to supports
sequential circuits that imply having data loops in the graph.
Finally, in order to encourage the sharing of plug-ins between
users, we plan to create a web based system where users
can upload their plug-ins and retrieve plug-ins developed by
others. On the long term, we plan to provide a simpler way
to write plug-ins using a script language to avoid compiling
and compatibility issues.

Acknowledgments. We thank Mathias Soeken for providing us with the EDA
CLI framework called Alice, as well as for the useful comments and ideas.
We also thank Grace Zgheib and Andrew Becker for useful discussions.

REFERENCES

[1] “ABC: A system for sequential synthesis and verification,” Berkeley
Logic Synthesis and Verification Group, Berkeley, Calif., http://www.
eecs.berkeley.edu/~alanmi/abc/.

[2] A. Shoufan, Z. Lu, and G. RoBling, “A platform for visualizing digital
circuit synthesis with VHDL,” in Proceedings of the 15th Annual Con-
ference on Innovation and Technology in Computer Science Education,
2010, pp. 294-98.

[3] D. A. Poplawski and Z. Kurmas, “JLS: a pedagogically targeted logic
design and simulation tool,” in ITiCSE0S, 2008, p. 314.

[4] A. Shoufan, Z. Lu, and S. A. Huss, “A web-based visualization and
animation platform for digital logic design,” IEEE Transactions on
Learning Technologies, vol. 8, no. 2, pp. 225-39, Apr. 2015.

[5] Z. Stanisavljevic, V. Pavlovic, B. Nikolic, and J. Djordjevic, “SDLDS—
system for digital logic design and simulation,” IEEE Transactions on
Education, vol. 56, no. 2, pp. 235-45, May 2013.

[6] C. Hacker and R. Sitte, “Interactive teaching of elementary digital logic
design with WinLogiLab,” IEEE Transactions on Education, vol. 47,
no. 2, pp. 196-203, May 2004.

[7] “Qt” https://www.qt.io/.

[8] P. Eades, “A heuristic for graph drawing,” Congressus Numerantium,
vol. 42, no. 11, pp. 149-60, 1984.

[9] “Cirkit: A circuit toolkit,” https://github.com/msoeken/cirkit.

[10] “The EPFL Combinational Benchmark Suite,” http://Isi.epfl.ch/
benchmarks, Integrated Systems Laboratory (LSI), EPFL, Lausanne,
Switzerland.

J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” Nature, pp. 44649, Dec. 1986.

(11]

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://www.qt.io/
https://github.com/msoeken/cirkit
http://lsi.epfl.ch/benchmarks
http://lsi.epfl.ch/benchmarks

	Introduction
	Interactive and Extensible Visualisation Tool for Logic Circuits
	Qt as Application Framework
	The Core Module
	Internal Graph Representation
	Graph Layout System
	Selection System
	Data Pipeline
	Extension with Plug-ins
	Plug-in Loader
	Graph Viewport

	Graphical User Interface
	Viewport Instances
	Command Line Interface
	Store Viewer

	Implemented plug-ins
	Performance

	Related Work
	Conclusion
	References

