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Abstract We present an algorithm that progressively generates canonical irredun-
dant Sums Of Products (SOPs) for completely- and incompletely-specified Boolean
functions using a satisfiability (SAT) solver. The progressive generation allows for
real time monitoring and early termination, as well as for generation of partial SOPs
for incremental applications. On the other hand, canonicity brings independence of
the original representation and often yields smaller and more regular SOPs that lead
to smaller circuits after algebraic factoring. Also, canonicity is key in applications
such as constraint solving and random assignment generation, which traditionally
rely on methods based on Binary Decision Diagram (BDD). However, in contrast
with BDDs, our algorithm can relax canonicity to improve speed and scalability. In
general, our method is more scalable for benchmarks with many structurally isomor-
phic outputs. It also improves the quality of results up to 10%, in terms of the SOP
size, compared to a state-of-the-art BDD-based method. Experiments with global
circuit restructuring using SAT-based SOPs show that area-delay product can be
improved up to 27%, compared to global restructuring using BDD-based SOPs.
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1 Introduction

Minimization of the two-level Sum Of Products (SOP) representation is well studied
due to the wide use of SOPs. In the past, research in SOPs was motivated by map-
ping into Programmable Logic Arrays (PLAs); now SOPs are supported in many
tools for logic optimization and are used for multi-level logic synthesis [4, 26], de-
lay optimization [20], test generation [10], but they are also used for fuzzy mod-
elling [11], data compression [2], photonic design automation [6] and in other areas.

These publications show that, contrary to the popular belief, research in SOP
minimization and its applications are not outdated. As an example, a recent work
uses SOPs for delay optimization in technology independent synthesis and technol-
ogy mapping [20]. In this work, improved quality is achieved by enumerating dif-
ferent SOPs of the local functions of the nodes, factoring them, and finding circuit
structures balanced for delay.

Another important application of SOP minimization, which is targeted and used
as case-study in this paper, is global circuit restructuring. If a multi-level circuit
structure for a Boolean function is not available, or if the circuit structure is with
poor quality, then a new circuit structure with desirable properties, such as low area,
short delay, good testability or improved implicativity (if the circuit represents con-
straints in a SAT solver) should be derived. The best known and widely used method
for global circuit restructuring is computing SOPs of the output functions in terms
of inputs, factoring the multi-output SOPs and deriving a new circuit structure from
the shared factored form. The main drawback of this method is the lack of scalability
of the algorithm for SOP generation and minimization.

Starting with the Quine-McCluskey algorithm [17], many algorithms and heuris-
tics for SOP generation and minimization have been developed. Prior research falls
into two broad categories: BDD-based algorithms and ESPRESSO-style algorithms.

To generate an SOP for a given Boolean function, techniques based on Binary
Decision Diagrams (BDDs), such as that of Minato-Moreale [19] and SCHERZO [7,
8], first build a BDD or a Zero-suppressed Decision Diagram (ZDD), then minimize
the BDD/ZDD size by using some heuristic approach to obtain a smaller SOP, and
finally convert the BDD/ZDD to an SOP. If building a BDD is feasible, then an SOP,
even a suboptimal one, can be generated. However, for some circuits, the BDD con-
struction suffers from the BDD memory explosion problem—the BDD size is expo-
nential in the number of input variables—and thus, using BDDs is often impractical.
Additional drawback is that BDDs are incompatible with incremental applications
since they require building a BDD for the complete circuit before converting it to
an SOP. Despite these issues, to our knowledge, the BDD-based method for SOP
generation and minimization is used in most of the industrial tools, and therefore
scalability improvements of it are highly desirable.

On the other hand, the ESPRESSO-style algorithms are inspired by the first ver-
sion of ESPRESSO [4]. For example, the logic minimizer ESPRESSO-MV [27] is
a faster and more efficient version of ESPRESSO. But, although these techniques
avoid the memory explosion problem inherent in the use of BDDs, they still incur
impractical runtimes for large Boolean functions and only minimize existing SOPs.
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Alternatively, recent progress in the performance of Boolean satisfiability (SAT)
solvers enabled using SAT in various domains of logic synthesis and verification
despite their worst-case exponential runtime. Thus, it has become a trend to replace
BDD-based methods with SAT-based ones. For example, this was done for model
checking [18], functional dependency [12], functional decomposition [15, 16] and
logic don’t-care-based optimization [21]. Existing methods for SOP generation us-
ing SAT solvers are based on enumeration of satisfying assignments [22]. On the
other hand, Sapra et al. [28] proposed using a SAT solver to implement part of
ESPRESSO’s procedures for SOP minimization in order to speed them up. But,
since they largely follow the traditional ESPRESSO style of SOP minimization,
they operate only on existing SOPs and do not consider generating a new SOP from
a multi-level representation of the Boolean function. Moreover, its runtime and end
results significantly depend on the SOP received as input. To the best of our knowl-
edge, there is still no complete SAT-based method for SOP generation similar to the
Irredundant Sum-of-Product (ISOP) algorithm for incompletely specified functions
using BDDs [19].

Accordingly, the main contribution of this paper is to propose a new engine for
SOP generation and minimization that is completely based on SAT solvers. Our
method generates the SOP progressively, building it cube by cube. We guarantee
that the generated SOPs are irredundant, meaning that no literal and no cube can be
deleted without changing the function. As we show in the result section, our algo-
rithm generates SOPs with the size similar to that of the BDD-based method [19].
Interestingly, for some circuits, we generate smaller SOPs (up to 10%), which is
useful in practical applications. For example, when a multi-level description of the
circuit is built using an SOP produced by the proposed SAT-based method, the area-
delay product of the resulting circuit, assuming unit-area and unit-delay model, of-
ten decreases (up to 27%), compared to global restructuring using BDDs.

Two main features characterize our SAT-based SOP generation and make it de-
sirable in various domains.

First, we generate an SOP progressively, unlike BDD-based methods that attempt
to construct a complete SOP at once. The progressive computation allows genera-
tion of a partial SOP for circuits whose complete SOP cannot be computed given
the resource limits. The partial SOPs can be exploited by other applications that
do not require the complete circuit functionality, but work with partially defined
functions [5,30]. Moreover, for circuits with large SOPs, the progressive generation
allows us to predict whether it is feasible to build an SOP for a circuit, and to check
if the SOP size is within the limits of the methods that are going to use it. For this,
at any moment, we can retrieve the number of outputs for which the SOP is already
computed, as well as the finished SOP portion of the currently processed output. We
can also easily compute an estimate or a lower-bound of the percentage of covered
minterms, considering uniform distribution of minterms in the space or consider-
ing the size of the truth table, respectively. In contrast, the termination time and the
quality of results of the BDD-based methods are unpredictable since the complete
BDD has to be built before converting it to an SOP.
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Second, counter-intuitive as it may sound, we show that the SAT-based computa-
tion can generate canonical SOPs. To this end, we combine (1) an algorithm that, un-
der a given variable order, generates consecutive SAT assignments in lexicographic
order [25], considering each assignment as integer value, and (2) a deterministic
algorithm that expands the received assignments into cubes. For a given function
and a variable order, the assignments (i.e., the minterms) are always generated in
the same order, and each assignment always results in the same cube. Thus, the re-
sulting SOP is canonical—it is unique and independent of the input implementation
of the function. The canonical nature of the resulting SOPs can be useful in those
domains where previously only BDDs could be used. For example, applications as
constraint solving [31] and random assignment generation [23] can benefit from the
canonicity if we iterate repeated generation of random valuation of inputs and get
the closest SAT assignment, as it is done in the proposed canonical SOP generation
method. Also, the canonicity brings regularity in the SOPs, and thus the results after
using algorithms for factoring [26] are in some cases better.

In the rest of the paper, we focus on completely-specified functions, but the
given SAT-based formulation works for incompletely-specified functions without
any changes. Indeed, after extracting the first cube and blocking it in the on-set of
the function, the rest of the computation is performed for the incompletely-specified
functions, even if the initial function was completely specified.

The rest of the paper is organized as follows. Section 2 gives background on
Boolean functions, the SOP representation and the satisfiability problem. Next, we
describe our algorithm for SAT-based progressive generation of irredundant SOPs
in Sect. 3. Section 4 gives our experimental setup and discusses the experimental
results. Finally, we conclude and present ideas for future work in Sect. 5.

2 Background Information

In this section, we define the terminology associated with Boolean functions and the
SOP representation, as well as with the satisfiability problem.

2.1 Boolean Functions

For a variable v, a positive literal represents the variable v, while the negative literal
represents its negation v̄. A cube, or a product, c, is a Boolean product (AND, ·)
of literals, c = l1 · . . . · lk. If a variable is not represented by a negative or a positive
literal in a cube, then it is represented by a don’t-care (−), meaning that it can take
both values 0 and 1. A cube with i don’t-cares, covers 2i minterms. A minterm is
the smallest cube in which every variable is represented by either a negative or a
positive literal.
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Let f (X) : Bn→{0,1,−}, B∈ {0,1}, be an incompletely specified Boolean func-
tion of n variables X = {x1, . . . ,xn}. The terms function and circuit are used inter-
changeably in this paper. The support set of f is the subset of variables that deter-
mine the output value of the function f . The set of minterms for which f evaluates
to 1 defines the on-set of f . Similarly, the minterms for which f evaluates to 0 and
don’t-care define the off-set and the don’t-care-set, respectively. In a multi-output
function F = { f1, . . . fm}, each output fi, 1≤ i≤ m, has its own support set, on-set,
off-set and don’t-care-set associated with it.

For simplicity, we define the following terms for single-output functions, al-
though our algorithm can handle multi-output functions. Any Boolean function can
be represented as a two-level sum of products (SOP), which is a Boolean sum (OR,
+) of cubes, S = c1+ . . .+ck. Assume that a Boolean function f is represented as an
SOP. A cube is prime, if no literal can be removed from the cube without changing
the value that the cube implies for f . A cube that is not prime, can be expanded by
substituting at least one literal with a don’t-care. The SOP is irredundant if each
cube is prime and no cube can be deleted without changing the function.

A canonical representation is a unique representation for a function under certain
conditions. For example, given a Boolean function and a fixed input variable order, a
canonical SOP is an SOP independent of the original representation of the function
given to the SAT solver, of the CNF algorithm, and of the used SAT solver. In a
similar way, BDDs generate a canonical SOP that only depends on an input variable
order [19].

2.2 Boolean Satisfiability

A disjunction (OR, +) of literals forms a clause, t = l1 + . . .+ lk. A propositional
formula is a logic expression defined over variables that take values in the set {0, 1}.
To solve a SAT problem, a propositional formula is converted into its Conjunctive
Normal Form (CNF) as a conjunction (AND, ·) of clauses, F = t1 · . . . ·tk. Algorithms
such as the Tseitin transformation [29] convert a Boolean function into a set of CNF
clauses.

A satisfiability (SAT) problem is a decision problem that takes a propositional
formula in CNF form and returns that the formula is satisfiable (SAT) if there is an
assignment of the variables from the formula for which the CNF evaluates to 1. Oth-
erwise, the propositional formula is unsatisfiable (UNSAT). A program that solves
SAT problems is called a SAT solver. SAT solvers provide a satisfying assignment
when the problem is satisfiable.

Modern SAT solvers can determine the satisfiability of a problem under given
assumptions. Assumptions are propositions that are given as input to the SAT solver
for a specific single invocation of the SAT solver and have to be satisfied for the
problem to be SAT.

Example 1. For the function f (x1,x2,x3) = (x1 + x2)x̄3, which is satisfiable for the
following assignments of the inputs {(0,1,0),(1,0,0),(1,1,0)}, a SAT solver with-
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out assumptions can return any of the given assignments. But, if we give as input
to the SAT solver the assumption x1 = 1, then it returns either (1,0,0) or (1,1,0),
because those two assignments satisfy the given assumption.

A lexicographic satisfiability (LEXSAT) problem is a SAT problem that takes
a propositional formula in CNF form and, given a variable order, returns a satis-
fying variable assignment whose integer value under the given variable order is
minimum (maximum) among all satisfiable assignments. The returned satisfying
assignment is called a LEXSAT assignment. If the formula has no satisfiable assign-
ments, LEXSAT proves it unsatisfiable. There are several solutions for the LEXSAT
problem [13, 24, 25]. For our work, we use an efficient algorithm for generating
consecutive LEXSAT assignments [25].

Example 2. For the function f (x1,x2,x3) from Example 1, LEXSAT returns either
the lexicographically smallest assignment (0,1,0) or the lexicographically greatest
assignment (1,1,0), depending on the user preference.

3 SAT-based SOP Generation

In this section, we describe our SAT-based algorithm that progressively generates an
irredundant SOP for a single-output function. For multi-output circuits, each output
is treated separately. In this paper, we focus on completely-specified functions, but
the algorithm can be easily used for incompletely-specified functions by providing
both the on-set and off-set as input to the algorithm. In the case of a completely
specified function one of them is derived by complementing the other.

The presented algorithm iteratively generates minterms, expands them into prime
cubes, and adds these cubes to the SOP. The SAT-based heuristics for minterm gen-
eration and cube expansion are described in Sect. 3.1 and Sect. 3.2, respectively.
Finally, to guarantee that the resulting SOP is irredundant, it is post-processed to
remove redundant cubes, as described in Sect. 3.3. Additionally, Sect. 3.4 describes
several techniques that reduce the runtime.

The algorithm can be implemented with one SAT solver parameterized to store
both on-set and off-set. Alternatively, it can use two solvers, one for on-set and
one for off-set. In our implementation of the algorithm, we use four different SAT
solvers: for both on-set and off-set, one is used to generate satisfying assignments,
the other to expand assignments to cubes. By employing four solvers, we ensure
that assignment generation and expansion do not interact with each other during the
SOP computation.

The procedures described in the following subsections assume that we are gen-
erating the on-set SOP. The same procedures are used to generate the off-set SOP,
by substituting the on-set SAT solver with an off-set SAT solver and vice versa.
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Fig. 1 Flowchart of the algorithm for minterm generation. Minterms are generated either as SAT
or LEXSAT assignments. If the problem is SAT, the generated minterm is passed to the cube
expansion algorithm to generate a cube that would cover the minterm. Once all minterms are
covered by the generated cubes, the SAT problem becomes UNSAT, and the SOP is returned after
removing the redundant cubes.

3.1 Generation of Minterms

In order to generate minterms for the on-set of a function f by using a SAT solver,
we initialize a SAT solver with the CNF of f . Then, to discard the trivial case when
the function has a constant on-set, we solve the SAT problem by asserting that f = 1.
If the problem is UNSAT, then f is a constant, and we return an SOP with one
constant cube. Otherwise, if the problem is SAT, we continue with the following
methods for minterm generation. Figure 1 shows the flowchart of these methods, as
well as their connection with the other methods of the SOP generation algortihm.

Generation of non-canonical SOP When the problem is SAT, an assignment for
the inputs is returned for which the function evaluates to 1. From the assignment, we
can generate a minterm for the function f in which the variables assigned to 0 and
1 are represented with the negative and positive literal, respectively. For example,
for a function f (x,y,z), the assignment (1,1,0) implies the minterm xyz̄. Once a
minterm is obtained, we expand it into a cube using the heuristic procedure from
Sect. 3.2. Next, we add the cube with its literals complemented to the SAT solver as
a blocking clause, which is an additional clause that blocks known solutions of the
SAT problem. This allows to generate a new minterm that is not covered by any of
the previously generated cubes. While the problem is SAT, we iteratively obtain a
minterm, expand it to a cube, and add the cube to both the SAT solver and the SOP.
The unsatisfiability of the problem indicates that the generated SOP is complete and
covers all on-set minterms.

Generation of canonical SOP Generating minterms from satisfying assignments
received from a SAT solver does not guarantee canonicity, since SAT solvers re-
turn minterms in a non-deterministic order that depends on the design of the solver
and the CNF generated for the function. Thus, to ensure canonicity, we iteratively
use a binary search-based LEXSAT algorithm, called BINARY [25], that generates
minterms in a lexicographic order that is unique for a given variable order. The al-
gorithm BINARY receives as input a potential assignment, which is the lexicograph-
ically smallest assignment that might be satisfiable, that is either the last generated
minterm or, initially, an assignment with all 0s. Then, BINARY tries to verify and
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Fig. 2 Flowchart of the algorithm for expansion of minterms into cubes. The algorithm for canon-
ical expansion ensures that all generated cubes are prime. After a cube is generated, it is added as a
blocking clause to the SAT solver used for minterm generation, and another minterm is generated.

fix the assignment of each variable defined with the potential assignment starting
from the leftmost variables and moving to right. We also use the proposed methods
for runtime improvement [25]: skip verifying the leading 1s, correcting the initial
potential assignment, and profiling the success of the first SAT call. Similarly to the
non-canonical SOPs, once we obtain a minterm, we expand it into a cube and add it
to the SAT solver as a blocking clause.

Example 3. For example, assume that for the function f (x1, . . . , x8), the last gen-
erated minterm (1,1,0,0,0,0,0,1) is received as an initial potential assignment.
Since this minterm is covered by the last cube, this assignment is not satisfiable, so
we can increase its value for 1 to get the smallest assignment that might be sat-
isfiable (1,1,0,0,0,0,1,0). Next, we can skip verifying the assignments x1 = 1
and x2 = 1, because the next lexicographically smallest assignment has to start
with the same leading 1s. Thus, we should only check the assignments for xi, for
3 ≤ i ≤ 8. Due to using binary search, with the first SAT call we assume half of
the unfixed assignments, and we give to the on-set SAT solver the assumptions
(x1, . . . ,x5) = (1,1,0,0,0). Assume that the problem was satisfiable and the SAT
solver returned the assignment (1,1,0,0,0,0,1,1). This assignment proves that an
on-set minterm with the assumed values exists, but moreover we can learn that the
assignments from the potential minterm x6 = 0 and x7 = 1 are correct. Next, to
check if the assignment for the last input x8 can be set to 0, we call the SAT solver
with the assumptions (x1, . . . ,x8) = (1,1,0,0,0,0,1,0). If it returns SAT, we return
the potential assignment as a minterm since all assignments are verified and fixed.
Otherwise, we flip x8 to 1 to increase the potential assignment before returning it.
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Fig. 3 A Karnaugh map
for the Boolean function
f (x,y,z, t) = x̄yt + xyz+ xȳt
with its prime cubes ci, where
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3.2 Expansion of Minterms into Cubes

In this subsection, we describe our SAT-based procedure that receives a minterm
and transforms it into a prime cube by iteratively removing literals (i.e., substituting
them with don’t-cares). For the on-set SOP, a literal can be removed, if after its
removal all minterms covered by the cube do not overlap with the off-set. Figure 2
shows a flowchart of the algorithm.

Canonical expansion to prime cubes The following deterministic algorithm ex-
pands a minterm into a cube by ensuring that, after removing each literal, the cube is
covering only on-set minterms. Since the literals are removed always in the same or-
der, which can be specified by the user, the algorithm is deterministic and produces
canonical cubes if the given minterms are canonical. Thus, to remove a literal, first,
we assume that the literal is removed from the cube, and an off-set SAT solver is run
with assumptions for the remaining literals of the cube. If the problem is UNSAT,
then no minterm covered by the cube belongs to the off-set, so we can extend the
cube by removing this literal. On the other hand, if the problem is SAT, we cannot
extend the cube, since the SAT solver found an off-set minterm that is covered by
the extended cube.

Example 4. Assume that for the function on Fig. 3, we received the minterm x̄yz̄t.
To remove the literal x̄, we would call the off-set SAT solver with the assumptions
(y,z, t) = (1,0,1). The SAT solver would return SAT, which means that x̄ cannot be
removed, because the cube yz̄t is covering the off-set minterm xyz̄t. However, if we
try to remove the literal z̄ by calling the SAT solver with the assumptions (x,y, t) =
(0,1,1), then we would receive UNSAT because there are no off-set minterms that
satisfy these assumptions, so z̄ can be removed to obtain the on-set cube c1.

Greedy canonical cube expansion To minimize the overlapping of cubes, we pro-
pose to remove literals in two rounds. In the first round, they are removed greedily,
after ensuring that multiple on-set minterms are covered by expanding each literal.

Example 5. Assume that for the function on Fig. 3, the cube c1 was computed and
added to the on-set SAT solver as a blocking clause. Also, assume that as a second
minterm xyzt is generated, which can be extended by removing one of the literals
x, y or t. If we remove x, we will obtain the cube c4 that covers only one additional
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minterm with respect to the existing cube c1, but if we remove y or t, we will obtain
c2 or c5, respectively, each of which covers two yet uncovered minterms.

In Example 5, our expansion procedure skips the opportunity to remove the literal x,
and tries to expand other literals if possible. This greedy selection of literals decides
to candidate a literal li for removal, if by removing it, the expanded cube covers
more than one new minterm. To check if this condition is satisfied, we flip li and
provide it, along with the remaining literals of the cube, as assumptions to an on-
set SAT solver in which the already generated cubes are added as blocking clauses.
If the problem is UNSAT, then we skip removing it temporarily. Otherwise, if the
problem is SAT, then we consider this literal for removal since by removing it we
cover more than one uncovered minterm. Once a literal is a candidate for removal,
we run the algorithm for canonical expansion described above to ensure that it can
be removed.

However, in this first round, we might skip some opportunities for expansion.
Thus, in the second round, for each skipped literal, we execute the algorithm for
canonical expansion. This guarantees that, after the second round, no literal can be
further removed, which means that the cube is prime. Since, we always try to remove
the literals in the same user specified order, this method generates a canonical SOP.

Fast non-canonical expansion If generating a canonical SOP is not required, we
can substitute the first round of expansion with a faster method to improve runtime:
If in an off-set SAT solver we assume the values from the received on-set minterm,
the problem is UNSAT and the SAT solver returns the set of literals used to prove
unsatisfiability (procedure “analyse final” in MiniSAT [9]). Since the returned lit-
erals are sufficient to prove unsatisfiability in an off-set SAT solver, they construct
a cube that covers only on-set minterms, and we can remove literals that are not
returned by the SAT solver. However, the set of remaining literals is not always
minimal, and thus we run additionally the algorithm for canonical expansion as a
second round to obtain a prime cube.

3.3 Removing Redundant Cubes

The cubes expanded with the methods from Sect. 3.2 are prime by construction.
However, by progressively adding cubes to the SAT solver, as described in Sect. 3.1,
we ensure that each cube is irredundant with respect to the preceding cubes, but not
with respect to the whole set of cubes.

Example 6. For the function f from Fig. 3, assume that the cubes c1, c5, c2 and c3
are generated in the given order. The cube c5 is irredundant with respect to c1, since
it additionally covers the minterms xyzt and xȳzt, but it is contained in the union of
c2 and c3.

In order to produce an irredundant SOP, after generating all cubes, we iterate
through the cubes to detect and remove redundant ones. First, we initialize a new
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SAT solver with clauses for all generated cubes and we assume that all cubes are
required. Then, by using the assumption mechanism, for each cube ci, we check if
there is an assignment for which ci evaluates to 1 while all the other irredundant
cubes evaluate to 0. If the problem is SAT, the cube is irredundant and the SAT
solver returns an assignment that corresponds to a minterm which is covered only
by ci. Otherwise, if the problem is UNSAT, then the cube is redundant, and thus it
is removed from the SOP and is excluded when checking the redundancy of the fol-
lowing cubes. Since we always try to remove cubes in the order in which they were
generated, this method is deterministic and maintains canonicity when canonical
SOPs are generated.

Example 7. Considering the cubes from Example 6, to check whether c3 is redun-
dant, we set c3 = 1 by assuming the values x = 1, y = 0 and t = 1. For the assumed
values, the other cubes evaluate to c1 = 0, c2 = 0 and c5 = z. Setting z = 0 leads to
c5 = 0. Thus, the problem is SAT and c3 is irredundant. The returned assignment
(x,y,z, t) = (1,0,0,1) defines a minterm xȳz̄t that is covered only by c3.

3.4 Improving the Runtime

In this subsection, we present four techniques that improve the runtime of the algo-
rithm by allowing early termination and by treating some special cases.

Simultaneous on-set and off-set generation Often, the SOP of the on-set and off-
set differ in size. For example, a three-input function implementing an AND gate,
f (x,y,z) = xyz, has an on-set SOP, f = Son = xyz with size 1, and an off-set SOP,
f̄ = Soff = x̄+ ȳ+ z̄ with size 3. Since we want to use the set with a smaller SOP, we
simultaneously generate two SOPs, for both the on-set and off-set, by generating one
cube at a time from each set, and we stop the generation when one SOP is complete.
This way, if one of set is much smaller than the other, we can avoid the situation
when the larger set of cubes has to be completely generated, before the smaller set
is discovered.

Prioritizing outputs with large SOPs Before generating SOPs for each output,
we propose to sort outputs by size of their input supports. The outputs with larger
supports are processed first since it is more likely that the SOP generation for these
outputs will exceed resource limits, so we can determine if we should terminate the
computation earlier.

Isomorphic circuits To benefit from the structure sharing among the circuit out-
puts, we implemented a method that decreases the runtime by detecting isomorphic
outputs. For this, first, we divide the outputs into isomorphic classes. Two outputs
are isomorphic and belong to the same class, if they implement an identical func-
tion using different inputs. Then, for each class, we generate an SOP only for one
output, which is the class representative, and duplicate it for the others. In Sect. 4.2,
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we show that this allows effective generation of an SOP only for 16.5% of all com-
binatorial outputs and has a big influence on scalability.

CNF sharing Generating a CNF for each output is time consuming. Thus, to ben-
efit from the logic sharing among the outputs, we can optionally share one CNF,
which corresponds to the complete circuit. For this, we generate the CNF of the
circuit, and then, for each output, we initialize the SAT solver only with the part of
the CNF for the corresponding output. Besides improving the runtime, as Table 1
shows, this option sometimes leads to better results in terms of area-delay product
after global restructuring.

Exploiting parallelism There are several opportunities where computations are
independent and can be parallelized. First, the computation of the on-set and off-set
SOPs can be executed in parallel. Since now we compute sequentially one cube for
each SOP interchangeably, it is expected that this would decrease the runtime by 2x.
Second, instead of computing the SOP of each output one after the other, we can also
compute each of them in parallel. Finally, for one SOP, we can compute cubes in
parallel by generating minterms from different parts of the Boolean space. However,
in this paper, all computations are done sequentially. Analyzing and exploiting the
effect of parallelism is left for future work.

4 Experimental Results

In this section, we describe our experimental setup and compare the proposed SAT-
based algorithm with a state-of-the-art BDD-based method.

4.1 Experimental Setup

We implemented the SAT-based algorithm described in Sect. 3 as a new command
satclp in ABC [3]. ABC is an open-source tool for logic synthesis, technology map-
ping, and formal verification of logic circuits. ABC features an integrated SAT
solver based on an early version of MiniSAT [9] that supports incremental SAT
solving. Furthermore, ABC provides an implementation of the BDD-based method
for SOP generation, namely the BDD construction for a multi-level circuit (com-
mand collapse) and the BDD-based ISOP computation [19] (command sop). For
convenience, in this section, we refer to the SAT-based and BDD-based methods as
SATCLP and BDDCLP, respectively. Finally, ABC allows us to analyze the area-
delay results when the generated SOPs are used to build a new multi-level circuit
structure. A multi-level network is generated using the fx command [26]. The net-
work is next converted into an And-Inverter Graph (AIG) (command strash), which
is an internal representation of ABC, and optimized with the dc2 command. The
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area and delay of the resulting AIGs are compared for different SOP generation
methods.

To evaluate our algorithm, we use the ISCAS’89 benchmarks, a set of large
MCNC benchmarks, a set of nine logic tables from the instruction decoder unit [1]
denoted as LT-DEC, and a set of proprietary industrial benchmarks. The LT-DEC
suite is well-suited to demonstrate the factoring gains as circuit size increases [14].
The names of the LT-DEC benchmarks are given in the form “[NPI]/[NPO]”, where
NPI is the number of primary inputs and NPO is the number of primary outputs.
For the main experiments, we discard benchmarks for which the SOP size exceeds
the built-in resource limits of the used commands, and thus, we use 30 (out of 32)
benchmarks from the ISCAS’89 set, 15 (out of 20) benchmarks from the MCNC
set, and 17 (out of 18) industrial benchmarks. With the discarded benchmarks, we
demonstrate the generation of partial SOPs.

4.2 SAT-based vs. BDD-based SOP Generation

To analyze the performance of the algorithm presented in Sect. 3, we run both
SATCLP and BDDCLP available in ABC. In this section, we present the results of
these experiments.

Although the command collapse dynamically finds a good variable order for the
BDD, changing the initial order of the primary inputs results in a different BDD
structure, which leads to a different SOP. Thus, to obtain a good SOP, we generate
five SOPs for BDDCLP by using five different initial orders of the primary inputs.
Similarly, SATCLP generates different SOPs for different orders of the primary in-
puts, which define the order of removing literals from the cubes. We either use
the pre-defined order from the benchmark file or order the inputs based on their
number of fanouts (option “Order PI”), which currently works only for the com-
binational benchmarks. We can also, optionally, reverse the selected variable order
(option “Reverse PI”). Moreover, we can enable generation of canonical SOPs (op-
tion “Canonical”), and for non-canonical SOPs we can enable generating one CNF
for all outputs as described in Sect. 3.4 (option “Shared CNF”). Thus, by changing
these four options, we generate 12 SOPs using SATCLP.

Generating multiple SOPs with each method results in SOPs that differ in size,
where the SOP size is equal to the number of cubes that constitute the SOP. Figure 4
shows and compares the benchmarks for which the size of the smallest SOP gener-
ated by each method is different. Although SATCLPmost often generates SOPs with
almost the same size as those generated by BDDCLP, for some benchmarks it gen-
erates smaller SOPs (up to 10%). Since the results for SATCLP are obtained using
several different options, Table 1 shows, under “#Cubes”, the number of benchmarks
for which the smallest SOP is generated when a given options is deactivated or acti-
vated. We can notice that, for 34 benchmarks we get exclusively smaller SOP when
generating canonical SOPs, and only for 7 benchmarks the non-canonical SOPs are
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Fig. 4 Size of the smallest SOPs generated by SATCLP compared to the smallest SOP generated
by BDDCLP. Only the benchmarks for which the SOP size differs are shown. The gray line shows
that, on average, SATCLP decreases the SOP size by 2.1%.

Table 1 Number of benchmarks (out of the 71 used benchmarks) for which activating or deactivat-
ing an option for SATCLP results in the smallest SOP in terms of number of cubes (columns under
“#Cubes”) or the best area-delay product (columns under “Area·Delay”). If for one benchmark, an
identical best result is obtained both when the option is activated and deactivated, then we count it
as a tie.

#Cubes Area·Delay

No Yes Tie No Yes Tie

Canonical 7 34 30 28 26 17
Shared CNF 43 1 27 40 13 18
Order PI 45 8 18 57 11 3
Reverse PI 20 15 36 28 21 22

Table 2 Comparison of the number of combinational outputs, which are primary outputs and latch
inputs, in the used benchmarks and the number of isomorphic classes, which is equal to the number
of calls of the SAT-based algorithm for SOP generation.

Set Number of
benchmarks

Combinational
outputs

Isomorphic
classes Ratio

LT-DEC 9 788 686 87.1%
MCNC 15 3024 1435 47.5%
ISCAS89 30 5753 1709 29.7%
Industrial 17 64267 8356 13.0%

Total 71 73832 12186 16.5%

smaller. Similarly, the SOP size increases for about 60% of the benchmarks if the
CNF is shared or if the inputs are ordered by their number of fanouts.

Next, we compare the algorithms’ runtime. The reported runtime is average over
three runs of the algorithm for SOP generation. For BDDCLP, we report the time
required to execute the commands collapse and sop. For SATCLP, we report the
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Fig. 5 The number of generated cubes for a partial SOP when the time limit is set between 1 and
10 seconds. The number of generated cubes depends on the size of the support set of the output
with largest support set, which is given in brackets. For all benchmarks, the generated cubes belong
to one output.

time taken by our command satclp, which includes the time to generate isomorphic
outputs, derive CNF, and initialize SAT solver instances, as well as the time for all
SAT calls for minterm generation, cube expansion, and removing redundant cubes.

In terms of scalability, as Table 2 shows, the idea of filtering out structurally iso-
morphic outputs presented in Sect. 3.4 allows computing an SOP only for 16.5%
of the combinational outputs, one for each isomorphic class, while for the other
outputs we duplicate the generated SOP of the class representative. This reduces
the runtime of our algorithm SATCLP, and for benchmarks rich in isomorphic
outputs, the proposed method is significantly faster than BDDCLP. For example,
from the public benchmarks, the maximum speedup is achieved for the benchmark
s35932 from the ISCAS’89 set, for which we generate SOPs only for 10 out of 2048
combinational outputs and thus, on average, SATCLP requires 0.10 seconds, while
BDDCLP requires 1.57 seconds. However, on average, our SATCLP is 7.5x slower
than BDDCLP for the public benchmarks. We have observed that the functions for
expanding minterms into cubes are the bottleneck. For example, for the LT-DEC
benchmarks, on average, 85% of the runtime is spent in this operation, while 8% is
spent on minterm generation, 2% on removing redundant cubes, and 5% on other
operations, such as dividing the outputs into classes, generating CNF, initializing
SAT solver instances, etc.

On the other hand, Table 3 shows runtime results for a suite of proprietary indus-
trial benchmarks. We can see that SATCLP is often faster than BDDCLP, especially
for the benchmarks that have many isomorphic outputs, and is definitely more scal-
able, that is, it completes on some test-cases, for which BDDCLP fails. For example,
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Table 3 Runtime results for the combinational industrial benchmarks when SOPs are generated
with BDDCLP and SATCLP. The columns “PIs” and “POs” give the number of primary inputs and
outputs, respectively. A dash (-) denotes that the method fails to compute an SOP. Highlighted are
the cases when SATCLP outperforms BDDCLP.

PIs POs Isomorphic
classes

Runtime (s)

BDDCLP SATCLP

Non-canonical Canonical

test01 2513 2377 2083 31.14 165.99 1658.92
test02 3236 3202 3146 - 32.46 112.15
test03 1542 514 113 10.64 12.74 70.79
test04 37397 292 155 144.57 15.01 197.71
test05 1178 606 95 - 141.85 748.81
test06 1488 1446 580 4.24 31.50 137.74
test07 8087 335 270 152.42 17.91 68.31
test08 438 512 432 3.96 17.34 84.67
test09 870 1636 792 2.36 18.17 125.19
test10 2376 1233 314 100.83 10.55 46.88
test11 3875 3274 138 14.49 2.49 7.95
test12 4626 3708 112 10.29 1.59 3.17
test13 1110 1040 74 50.86 1.30 9.29
test14 8514 1323 890 - - -
test15 47356 4136 21 - 0.21 0.26
test16 58382 18433 9 - 0.63 0.28
test17 68620 17411 19 - 0.64 0.33
test18 36900 4112 3 603.86 277.08 42292.50

Average 1.00 0.54 2.88

for the non-canonical SOPs, on average, SATCLP decreases the runtime of SOP
generation by 45.9%. For canonical SOPs, although SATCLP is 5.2x slower than
its non-canonical version and 2.9x slower than BDDCLP, it successfully generates
SOPs for 5 benchmarks, for which BDDCLP fails.

We believe that the increased scalability of SATCLP is largely due to the fact
that most of the industrial testcases have hundreds of inputs and outputs, which
makes constructing global BDDs in the same manager problematic for all outputs
at once. The algorithm SATCLP does not suffer from this limitation, because it
computes the SOPs for one output at a time. It can be argued that the BDD-based
computation can also be performed on the per-output basis. However, in this case,
the BDD manager will inevitably find different variable orders for different outputs,
which will increase the size of the resulting multi-level circiuts when these SOPs
are factored. In fact, factoring benefits from computing BDD-based SOP using the
same variable order, which facilitates creating similar combinations of literals in
different cubes, which in turn helps improve the quality of shared divisor extraction
and factoring.

Finally, since we generate cubes progressively, unlike BDDCLP, we can build
partial SOPs even for large circuits, and these can be used for incremental appli-
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Fig. 6 The best results for each benchmark after a multi-level description is built from SOPs gen-
erated by our SAT-based algorithm, compared to using a BDD-based SOPs. For most benchmarks,
we obtain Pareto optimal solutions.

cations. Figure 5 shows the number of cubes composing the partial non-canonical
SOPs for which a time limit for the runtime is set to t seconds, where t is an integer
value such that 1 ≤ t ≤ 10. For functions with larger supports, we usually generate
less cubes because more time is required for cube expansion. Only for the bench-
mark test14 we are not able to generate any cube in the first 6 seconds due to the
large support set of the first processed output, which depends on 6246 inputs. For
the other benchmarks, we generate thousands of cubes in just a few seconds. In this
experiment, we are still generating both the on-set and the off-set SOP at the same
time. However, in the incremental applications, we can generate just one of them,
which would increase the number of generated cubes for a given time limit.

4.3 Case-Study: SAT-based SOPs for Generation of Multilevel
Implementation

As explained in Sect. 4.2, we generate several SOPs with each method. The dif-
ferent SOPs result in multi-level networks with different area and delay. As Fig. 6
shows, for most benchmarks, our algorithm obtains Pareto-optimal solutions, com-
pared to BDDCLP. To obtain these results, we isolate the best circuit implementa-
tions in terms of area-delay product as derived by each method. Table 1, with the
columns “Area·Delay”, shows the number of benchmarks with the smallest area-
delay product generated when a given option was deactivated and activated. For 26
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benchmarks we generate a circuit structure with smaller area-delay product when
generating canonical SOPs, while for 29 benchmarks the non-canonical SOPs are a
better option. Also, for most benchmarks it is best to generate an SOP by using the
original ordering of primary inputs used in the benchmark file.

5 Conclusion

In this paper, we present a novel algorithm for progressive generation of irredundant
canonical SOPs using heuristics based solely on SAT solving. Besides generating
SOPs, the canonicity and the progressive generation make our heuristics desirable in
many other areas where minterms or cubes are required, and for which the existing
methods are either unscalable or impractical to use.

Regarding the quality of results, we show that for computing a complete SOP, on
average, the SAT-based computation is as good as the BDD-based one. Moreover,
the multi-level circuit structures derived using the SOPs generated by our approach
are often better or Pareto-optimal.

Regarding the runtime, the proposed method is somewhat slower than the BDD-
based method for most of the public benchmarks, but it is faster for circuits that
are rich in isomorphic outputs. Thus, for the industrial benchmarks, our method
is both faster and more scalable, and therefore a good candidate for global circuit
restructuring at least in that particular industrial setting.

Besides the described opportunities for parallelization, the proposed method can
also benefit from the ongoing improvement in modern SAT solvers. For example,
recently we explored a new push/pop interface for assumptions used in the incre-
mental SAT solving, which led to additional runtime improvements. As we show,
for some circuits the results can improve by changing the variable order in which
the cubes are expanded, but a careful study of this problem is required to improve
further the quality of results.

In addition to runtime improvements, future work will focus on developing a
dedicated SAT-based multi-output SOP computation, which computes cubes that
are shared between several outputs. A recent publication [14] indicates that a signif-
icant improvement in quality (more than 10%) can be achieved by computing and
factoring multi-output SOPs. We are not aware of a practical method for BDD-based
multi-output SOP computation, so it is likely that SAT will be the only way to work
with multiple outputs. Other directions of future work will include exploring the
benefits of the progressive generation of canonical minterms and cubes in different
areas. One such area is multi-level logic synthesis where incremental SAT-based
decomposition methods can be developed based on partial SOPs computed for the
output functions.
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